PLoS Negl Trop Dis
November 2024
Oxidative stress promotes T. cruzi growth and development of chronic Chagas heart dysfunction. However, the literature contains gaps that must be fulfilled, largely due to variations in parasite DTU sources, cell types, mouse strains, and tools to manipulate redox status.
View Article and Find Full Text PDFPLoS Negl Trop Dis
August 2012
Background: The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO) levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2) is proposed to play a role in Trypanosoma cruzi control.
View Article and Find Full Text PDFPLoS Pathog
August 2012
In Chagas disease, CD8(+) T-cells are critical for the control of Trypanosoma cruzi during acute infection. Conversely, CD8(+) T-cell accumulation in the myocardium during chronic infection may cause tissue injury leading to chronic chagasic cardiomyopathy (CCC). Here we explored the role of CD8(+) T-cells in T.
View Article and Find Full Text PDFUnderstanding the dual participation of the immune response in controlling the invader and at the same time causing tissue damage might contribute to the design of effective new vaccines and therapies for Chagas disease. Perforin, a cytolytic protein product of killer cells, is involved in resistance to acute Trypanosoma cruzi infection. However, the contribution of perforin in parasite control and chronic chagasic cardiomyopathy is unclear.
View Article and Find Full Text PDFMem Inst Oswaldo Cruz
July 2009
One hundred years ago, Carlos Chagas discovered a new disease, the American trypanosomiasis. Chagas and co-workers later characterised the disease's common manifestation, chronic cardiomyopathy, and suggested that parasitic persistence coupled with inflammation was the key underlying pathogenic mechanism. Better comprehension of the molecular mechanisms leading to clinical heart afflictions is a prerequisite to developing new therapies that ameliorate inflammation and improve heart function without hampering parasite control.
View Article and Find Full Text PDFA heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4(+) and CD8(+) T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4(+) and CD8(+) T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge.
View Article and Find Full Text PDFCCL2/MCP-1 has emerged recently as a critical factor in infectious and autoimmune myocarditis. In fact, this chemokine is produced in great amounts in hearts from Trypanosoma cruzi-infected mice and is known to enhance parasite uptake and destruction by macrophages. Herein, we studied the involvement of CCL2 in tissue inflammation and resistance to T.
View Article and Find Full Text PDFImmunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains.
View Article and Find Full Text PDFThe comprehension of the molecular mechanisms leading to Trypanosoma cruzi-elicited heart dysfunction might contribute to design novel therapeutic strategies aiming to ameliorate chronic Chagas disease cardiomyopathy. In C3H/He mice infected with the low virulence T. cruzi Colombian strain, the persistent cardiac inflammation composed mainly of CCR5(+) T lymphocytes parallels the expression of CC-chemokines in a pro-inflammatory IFN-gamma and TNF-alpha milieu.
View Article and Find Full Text PDFMem Inst Oswaldo Cruz
June 2008
In Chagas disease, understanding how the immune response controls parasite growth but also leads to heart damage may provide insight into the design of new therapeutic strategies. Tumor necrosis factor-alpha (TNF-alpha) is important for resistance to acute Trypanosoma cruzi infection; however, in patients suffering from chronic T. cruzi infection, plasma TNF-alpha levels correlate with cardiomyopathy.
View Article and Find Full Text PDFImmunization of BALB/c mice with an expression genomic library of Toxoplasma gondii induces a Th1-type immune response, with recognition of several T. gondii proteins (21 to 117 kDa) and long-term protective immunity against a lethal challenge. These results support further investigations to achieve a multicomponent anti-T.
View Article and Find Full Text PDF