Publications by authors named "Jalina A Graham"

The numerical sense of animals includes identifying the numerosity of a sequence of events that occur with specific intervals, e.g., notes in a call or bar of music.

View Article and Find Full Text PDF

The sense of orientation of an animal is derived from the head direction (HD) system found in several limbic structures and depends on an intact vestibular labyrinth. However, how the vestibular system influences the generation and updating of the HD signal remains poorly understood. Anatomical and lesion studies point toward three key brainstem nuclei as key components for generating the HD signal-nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nuclei.

View Article and Find Full Text PDF

Unlabelled: An animal's perceived sense of orientation depends upon the head direction (HD) system found in several limbic structures and depends upon an intact peripheral vestibular labyrinth. However, how the vestibular system influences the generation, maintenance, and updating of the HD signal remains poorly understood. Anatomical and lesion studies point towards three key brainstem nuclei as being potential critical components in generating the HD signal: nucleus prepositus hypoglossi (NPH), supragenual nucleus (SGN), and dorsal paragigantocellularis reticular nuclei (PGRNd).

View Article and Find Full Text PDF

Across sensory systems, temporal frequency information is progressively transformed along ascending central pathways. Despite considerable effort to elucidate the mechanistic basis of these transformations, they remain poorly understood. Here we used a novel constellation of approaches, including whole-cell recordings and focal pharmacological manipulation, in vivo, and new computational algorithms that identify conductances resulting from excitation, inhibition and active membrane properties, to elucidate the mechanisms underlying the selectivity of midbrain auditory neurons for long temporal intervals.

View Article and Find Full Text PDF

Sound duration is important in acoustic communication, including speech recognition in humans. Although duration-selective auditory neurons have been found, the underlying mechanisms are unclear. To investigate these mechanisms we combined in vivo whole-cell patch recordings from midbrain neurons, extraction of excitatory and inhibitory conductances, and focal pharmacological manipulations.

View Article and Find Full Text PDF

In recently diverged gray treefrogs (Hyla chrysoscelis and H. versicolor), advertisement calls that differ primarily in pulse shape and pulse rate act as an important premating isolation mechanism. Temporally selective neurons in the anuran inferior colliculus may contribute to selective behavioral responses to these calls.

View Article and Find Full Text PDF

Interval-counting neurons (ICNs) respond after a threshold number of sound pulses have occurred with specific intervals; a single aberrant interval can reset the counting process. Female gray treefrogs, Hyla chrysoscelis and H. versicolor, discriminate against synthetic 'calls' possessing a single interpulse interval 2-3 three times the optimal value, suggesting that ICNs are important for call recognition.

View Article and Find Full Text PDF

Whole-cell patch neurophysiology and pharmacological manipulations have provided unprecedented insight into the functions of central neurons, but their combined use has been largely restricted to in vitro preparations. We describe a method for performing whole-cell patch recording and focal application of pharmacological agents in vivo. A key feature of this technique involves iontophoresis of glutamate to establish proximity of drug and recording pipettes.

View Article and Find Full Text PDF