Publications by authors named "Jalila Chagraoui"

Ex vivo expansion of hematopoietic stem cells (HSC) requires the maintenance of a stemness state while cells are proliferating. This can be achieved via exposure to UM171 which leads to the degradation of chromatin modifiers and prevents the loss of key epigenetic marks. However, the chromatin landscape varies across populations within the hematopoietic system and the effect of UM171 on self-renewal and differentiation potential of different hematopoietic progenitor cells is less characterized.

View Article and Find Full Text PDF

Immunotherapy remains underexploited in acute myeloid leukemia (AML) compared to other hematological malignancies. Currently, gemtuzumab ozogamicin is the only therapeutic antibody approved for this disease. Here, to identify potential targets for immunotherapeutic intervention, we analyze the surface proteome of 100 genetically diverse primary human AML specimens for the identification of cell surface proteins and conduct single-cell transcriptome analyses on a subset of these specimens to assess antigen expression at the sub-population level.

View Article and Find Full Text PDF

Ex vivo expansion of hematopoietic stem cells (HSCs) is gaining importance for cell and gene therapy, and requires a shift from dormancy state to activation and cycling. However, abnormal or excessive HSC activation results in reduced self-renewal ability and increased propensity for myeloid-biased differentiation. We now report that activation of the E3 ligase complex CRL3KBTBD4 by UM171 not only induces epigenetic changes through CoREST1 degradation but also controls chromatin-bound master regulator of cell cycle entry and proliferative metabolism (MYC) levels to prevent excessive activation and maintain lympho-myeloid potential of expanded populations.

View Article and Find Full Text PDF

Monosomy 5 and deletions of the chromosome 5q (-5/del(5q)) are recurrent events in de novo adult acute myeloid leukemia (AML), reaching up to 40% of cases in secondary AML. These chromosome anomalies are associated with TP53 mutations and with very poor prognosis. Using the large Leucegene genomic and transcriptomic dataset composed of 48 -5/del(5q) patient specimens and 367 control AML, we identified DELE1 - located in the common deleted region - as the most consistently downregulated gene in these leukemias.

View Article and Find Full Text PDF
Article Synopsis
  • Acute megakaryoblastic leukemia (AMKL) is a rare and dangerous childhood cancer linked to specific genetic fusions, with key subtypes associated with high mortality rates.
  • Researchers created models from human cord blood to study CG2 AMKL, revealing that these leukemic cells have unique surface markers and a block in normal cell differentiation, as well as a reliance on the survival factor BCL-XL.
  • Targeting BCL-XL with drugs like navitoclax showed promise in reducing leukemic cells, indicating a potential new treatment approach for CG2 and NUP98r AMKL, especially when used alongside low-dose chemotherapy.
View Article and Find Full Text PDF

High-mobility group AT-hook 2 (HMGA2) is a nonhistone chromatin-binding protein that is normally expressed in stem cells of various tissues and aberrantly detected in several tumor types. We recently observed that one-fourth of human acute myeloid leukemia (AML) specimens express HMGA2, which associates with a very poor prognosis. We present results indicating that HMGA2+ AMLs share a distinct transcriptional signature representing an immature phenotype.

View Article and Find Full Text PDF

CEACAM1 is a novel cell surface marker of ex vivo expanded LT-HSCs. Sorting umbilical cord blood cells based on CEACAM1 and known HSC marker expression allows purification of LT-HSCs with improved purity.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) sustain blood cell homeostasis throughout life and can regenerate all blood lineages after transplantation. Despite this clear functional definition, highly enriched isolation of human HSCs can currently only be achieved through combinatorial assessment of multiple surface antigens. Although several transgenic HSC reporter mouse strains have been described, no analogous approach to prospectively isolate human HSCs has been reported.

View Article and Find Full Text PDF

Zinc finger (ZnF) proteins represent one of the largest families of human proteins, although most remain uncharacterized. Given that numerous ZnF proteins are able to interact with DNA and poly(ADP ribose), there is growing interest in understanding their mechanism of action in the maintenance of genome integrity. We now report that the ZnF protein E4F transcription factor 1 (E4F1) is an actor in DNA repair.

View Article and Find Full Text PDF

Human hematopoietic stem cells (HSCs) exhibit attrition of their self-renewal capacity when cultured ex vivo, a process that is partially reversed upon treatment with epigenetic modifiers, most notably inhibitors of histone deacetylases (HDACs) or lysine-specific demethylase LSD1. A recent study showed that the human HSC self-renewal agonist UM171 modulates the CoREST complex, leading to LSD1 degradation, whose inhibition mimics the activity of UM171. The mechanism underlying the UM171-mediated loss of CoREST function remains undetermined.

View Article and Find Full Text PDF

Rapid T cell reconstitution following hematopoietic stem cell transplantation (HSCT) is essential for protection against infections and has been associated with lower incidence of chronic graft-versus-host disease (cGVHD), relapse, and transplant-related mortality (TRM). While cord blood (CB) transplants are associated with lower rates of cGVHD and relapse, their low stem cell content results in slower immune reconstitution and higher risk of graft failure, severe infections, and TRM. Recently, results of a phase I/II trial revealed that single UM171-expanded CB transplant allowed the use of smaller CB units without compromising engraftment (www.

View Article and Find Full Text PDF

Background: Benefits of cord blood transplantation include low rates of relapse and chronic graft-versus-host disease (GVHD). However, the use of cord blood is rapidly declining because of the high incidence of infections, severe acute GVHD, and transplant-related mortality. UM171, a haematopoietic stem cell self-renewal agonist, has been shown to expand cord blood stem cells and enhance multilineage blood cell reconstitution in mice.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the important signals that help maintain the balance between self-renewal and differentiation in adult stem cells, specifically hematopoietic stem cells (HSCs).
  • The compound UM171 promotes HSC self-renewal by activating a network that manages both pro- and anti-inflammatory responses, with NFKB activation playing a key role in this process.
  • The research shows that EPCR is essential for protecting HSCs from inflammation and oxidative stress; if EPCR is deleted, HSC function is negatively impacted, highlighting the delicate balance needed for effective stem cell expansion.
View Article and Find Full Text PDF

Transplantation of expanded hematopoietic stem cells (HSCs) and gene therapy based on HSC engineering have emerged as promising approaches for the treatment of hematological diseases. Nevertheless, the immunophenotype of cultured HSCs remains poorly defined. Here, we identify Integrin-α3 (ITGA3) as a marker of cultured human HSCs.

View Article and Find Full Text PDF

Fanconi Anemia (FA) clinical phenotypes are heterogenous and rely on a mutation in one of the 22 FANC genes (FANCA-W) involved in a common interstrand DNA crosslink-repair pathway. A critical step in the activation of FA pathway is the monoubiquitination of FANCD2 and its binding partner FANCI. To better address the clinical phenotype associated with FANCI and the epistatic relationship with FANCD2, we created the first conditional inactivation model for FANCI in mouse.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are trying to make gene therapies that use stem cells better by improving how well the genes get into the cells.
  • They tested a special helper, called UM171, and found that it made the process work much better, increasing the number of healthy stem cells that could be used in treatments.
  • UM171 helps get genes into different types of cells, not just those from young cord blood, which means it could be useful for many types of medical therapies.
View Article and Find Full Text PDF

Acute promyelocytic leukemia (APL) is a medical emergency because of associated lethal early bleeding, a condition preventable by prompt diagnosis and therapeutic intervention. The mechanisms underlying the hemostatic anomalies of APL are not completely elucidated. RNA-sequencing-based characterization of APL (n = 30) was performed and compared to that of other acute myeloid leukemia (n = 400) samples and normal promyelocytes.

View Article and Find Full Text PDF

-mutated () acute myeloid leukemia (AML) is associated with adverse outcome, highlighting the urgent need for a better genetic characterization of this AML subgroup and for the design of efficient therapeutic strategies for this disease. Toward this goal, we further dissected the mutational spectrum and gene expression profile of AML and correlated these results to drug sensitivity to identify novel compounds targeting this AML subgroup. RNA-sequencing of 47 primary AML specimens was performed and sequencing results were compared to those of wild-type samples.

View Article and Find Full Text PDF

Neomorphic missense mutations affecting crucial lysine residues in histone H3 genes significantly contribute to a variety of solid cancers. Despite the high prevalence of mutations in pediatric glioblastoma and their well-established impact on global histone H3 lysine 27 di- and trimethylation (H3K27me2/3), the relevance of these mutations has not been studied in acute myeloid leukemia (AML). Here, we report the first identification of and mutations in patients with AML.

View Article and Find Full Text PDF

The ubiquitin-associated protein 2-like () gene remains poorly studied in human and mouse development. UBAP2L interacts with the Polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and determines the activity of mouse hematopoietic stem cells Here we show that loss of leads to disorganized respiratory epithelium of mutant neonates, which die of respiratory failure. We also show that overexpression leads to epithelial-mesenchymal transition-like phenotype in a non-small cell lung carcinoma (NSCLC) cell line.

View Article and Find Full Text PDF

A small subset of human cord blood CD34 cells express endothelial protein C receptor (EPCR/CD201/PROCR) when exposed to the hematopoietic stem cell (HSC) self-renewal agonist UM171. In this article, we show that EPCR-positive UM171-treated cells, as opposed to EPCR-negative cells, exhibit robust multilineage repopulation and serial reconstitution ability in immunocompromised mice. In contrast to other stem cell markers, such as CD38, EPCR expression is maintained when cells are introduced in culture, irrespective of UM171 treatment.

View Article and Find Full Text PDF

Current chemotherapies for T cell acute lymphoblastic leukemia (T-ALL) efficiently reduce tumor mass. Nonetheless, disease relapse attributed to survival of preleukemic stem cells (pre-LSCs) is associated with poor prognosis. Herein, we provide direct evidence that pre-LSCs are much less chemosensitive to existing chemotherapy drugs than leukemic blasts because of a distinctive lower proliferative state.

View Article and Find Full Text PDF

It has been previously shown that the polycomb protein BMI1 and E4F1 interact physically and genetically in the hematopoietic system. Here, we report that E4f1 is essential for hematopoietic cell function and survival. E4f1 deletion induces acute bone marrow failure characterized by apoptosis of progenitors while stem cells are preserved.

View Article and Find Full Text PDF

The small number of hematopoietic stem and progenitor cells in cord blood units limits their widespread use in human transplant protocols. We identified a family of chemically related small molecules that stimulates the expansion ex vivo of human cord blood cells capable of reconstituting human hematopoiesis for at least 6 months in immunocompromised mice. The potent activity of these newly identified compounds, UM171 being the prototype, is independent of suppression of the aryl hydrocarbon receptor, which targets cells with more-limited regenerative potential.

View Article and Find Full Text PDF