Publications by authors named "Jalil Badraghi"

Petroleum, as the major energy source, is indispensable from our lives. Presence of compounds resistant to degradation can pose risks for human health and environment. Basidiomycetes have been considered as powerful candidates in biodegradation of petroleum compounds via secreting ligninolytic enzymes.

View Article and Find Full Text PDF

Ion pair of cationic surfactant (cetytrimethylammonium bromide) and tungestosilicic acid incorporated in PVC matrix, was used for coating a piece of copper wire as a new high sensitive SPME fiber in extraction and determination of BTEX compounds from the headspace of water samples prior to GC/FID analysis. Under optimum extraction conditions, limits of detection for benzene, toluene, ethylbenzene, p-xylene, m-xylene and o-xylene were found to be 1.18, 5.

View Article and Find Full Text PDF

Sodium dodecyl sulfate (SDS) at low concentrations considerably enhanced insulin aggregation and reduced the chaperone-like activity of purified camel alphaS(1)-casein (alphaS(1)-CN). These observed changes were the result of repulsive electrostatic interactions between both negative charged head groups of SDS and alphaS(1)-CN, and the net negative charge of insulin molecules, resulting in the greater exposure of hydrophobic patches of insulin and its enhanced aggregation. In contrast, enhanced hydrophobic interactions were primarily responsible for the conformational changes observed in insulin and alphaS(1)-CN at high SDS concentrations, resulting in increased binding of SDS and alphaS(1)-CN to insulin and its reduced aggregation.

View Article and Find Full Text PDF

In this study camel alphaS(1)-casein (alphaS(1)-CN) was purified, using a two-step purification procedure. The anti-aggregation (chaperone-like) ability of the purified protein sample was examined in a wide range of experimental conditions and at different concentrations of camel alphaS(1)-CN, in the presence of salts and sodium dodecyl sulfate (SDS). To examine chaperone-like activity of camel alphaS(1)-CN, bovine pancreatic insulin was used as the target protein.

View Article and Find Full Text PDF