High temperature stable selective emitters can significantly increase efficiency and radiative power in thermophotovoltaic (TPV) systems. However, optical properties of structured emitters reported so far degrade at temperatures approaching 1200 °C due to various degradation mechanisms. We have realized a 1D structured emitter based on a sputtered W-HfO layered metamaterial and demonstrated desired band edge spectral properties at 1400 °C.
View Article and Find Full Text PDFThe original version of this article contained an error in first sentence of the Acknowledgements, which incorrectly read 'M.A.G, D.
View Article and Find Full Text PDFWe consider emitting nanoparticles in dielectric nanocomposites with varying refractive index contrast and geometry. For that we develop a simple and universal method to calculate the emission enhancement in nanocomposites that employs solely the calculation of the effective refractive index and electric field distributions from three quasistatic calculations with orthogonal polarizations. The method is exemplified for dilute nanocomposites without electromagnetic interaction between emitting particles as well as for dense nanocomposites with strong particle interaction.
View Article and Find Full Text PDFBased on the reciprocity theorem, we present a formalism to calculate the power emitted by a dipole source into a particular propagating mode leaving an open optical system. The open system is completely arbitrary and the approach can be used in analytical calculations but may also be combined with numerical electromagnetic solvers to describe the emission of light sources into complex systems. We exemplify the use of the formalism in numerical simulations by analyzing the emission of a dipole that is placed inside a cavity with connected single mode exit waveguide.
View Article and Find Full Text PDFNon-iridescent structural colors based on disordered arrangement of monodisperse spherical particles, also called photonic glass, show low color saturation due to gradual transition in the reflectivity spectrum. No significant improvement is usually expected from particles optimization, as Mie resonances are broad for small dielectric particles with moderate refractive index. Moreover, the short range order of a photonic glass alone is also insufficient to cause sharp spectral features.
View Article and Find Full Text PDFDisordered structures producing a non-iridescent color impression have been shown to feature a spherically shaped Fourier transform of their refractive-index distribution. We determine the direction and efficiency of scattering from thin films made from such structures with the help of the Ewald sphere construction which follows from first-order scattering approximation. This way we present a simple geometrical argument why these structures are well suited for creating short wavelength colors like blue but are hindered from producing long wavelength colors like red.
View Article and Find Full Text PDFThe reflection of light from moving boundaries is of interest both fundamentally and for applications in frequency conversion, but typically requires high pump power. By using a dispersion-engineered silicon photonic crystal waveguide, we are able to achieve a propagating free carrier front with only a moderate on-chip peak power of 6 W in a 6 ps-long pump pulse. We employ an intraband indirect photonic transition of a co-propagating probe, whereby the probe practically escapes from the front in the forward direction.
View Article and Find Full Text PDFUsing optical in-situ measurements in an electrochemical environment, we study the electrochemical tuning of the transmission spectrum of films from the nanoporous gold (NPG) based optical metamaterial, including the effect of the ligament size. The long wavelength part of the transmission spectrum around 800 nm can be reversibly tuned via the applied electrode potential. The NPG behaves as diluted metal with its transition from dielectric to metallic response shifted to longer wavelengths.
View Article and Find Full Text PDFWe report on the properties of a thermal emitter which radiates into a single mode waveguide. We show that the maximal power of thermal radiation into a propagating single mode is limited only by the temperature of the thermal emitter and does not depend on other parameters of the waveguide. Furthermore, we show that the power of the thermal emitter cannot be increased by resonant coupling.
View Article and Find Full Text PDFPreviously, the effect of pulse bandwidth compression or broadening was observed in reflection from a moving front together with the Doppler shift. In this letter, an approach is presented, which alters pulse bandwidth without change in the central frequency. It occurs when light is reflected from a moving front of an otherwise stationary photonic crystal.
View Article and Find Full Text PDFWe propose a circulator consisting of a ring resonator coupled to three waveguides with Bragg reflectors at one end of each waveguide. A magneto-optically active material placed inside the ring resonator causes the two counter-propagating modes to split in resonance frequency, which can be exploited for perfect circulation by properly adjusting the coupling between the three waveguides and the ring. Such a device features a transmission spectrum that is similar to three-port photonic crystal circulators but is much simpler to build as it only contains elements that have already been experimentally realized.
View Article and Find Full Text PDFWe show that the structure demonstrated by Feng et al. (Reports, 5 August 2011, p. 729) cannot enable optical isolation because it possesses a symmetric scattering matrix.
View Article and Find Full Text PDFWe present the theoretical concept of an optical isolator based on resonance splitting in a silicon ring resonator covered with a magneto-optical polymer cladding. For this task, a perturbation method is derived for the modes in the cylindrical coordinate system. A polymer magneto-optical cladding causing a 0.
View Article and Find Full Text PDF