Publications by authors named "Jalanko A"

Article Synopsis
  • The TWINGEN study aims to identify individuals at high risk for Alzheimer's disease (AD) by assessing various cognitive and health-related factors through an observational clinical recall and biomarker analysis.
  • The study involves around 800 participants, gathering data through blood samples, questionnaires, and wearable technology for lifestyle metrics, while also including a smaller group for in-person assessments.
  • All data collected will be integrated with existing Finnish biobank records and utilized for further research, following ethical guidelines set by relevant authorities.
View Article and Find Full Text PDF

Introduction: A better understanding of the earliest stages of Alzheimer's disease (AD) could expedite the development or administration of treatments. Large population biobanks hold the promise to identify individuals at an elevated risk of AD and related dementias based on health registry information. Here, we establish the protocol for an observational clinical recall and biomarker study called TWINGEN with the aim to identify individuals at high risk of AD by assessing cognition, health and AD-related biomarkers.

View Article and Find Full Text PDF
Article Synopsis
  • Population isolates like Finland provide a unique advantage for genetic research by having concentrated deleterious alleles in low-frequency variants due to historical bottlenecks.
  • The FinnGen study aims to analyze data from 500,000 Finnish individuals, focusing on their genomes and health records, particularly as many participants are older and have disease-related data.
  • From the analysis of 224,737 participants and additional biobank data, researchers discovered 30 new associations and a total of 2,733 significant genetic links across various diseases, highlighting the importance of low-frequency variants in understanding common diseases.
View Article and Find Full Text PDF

Neuronal ceroid lipofuscinoses (NCLs) are autosomal recessive progressive encephalopathies caused by mutations in at least 14 different genes. Despite extensive studies performed in different NCL animal models, the molecular mechanisms underlying neurodegeneration in NCLs remain poorly understood. To model NCL in human cells, we generated induced pluripotent stem cells (iPSCs) by reprogramming skin fibroblasts from a patient with CLN5 (ceroid lipofuscinosis, neuronal, 5) disease, the late infantile variant form of NCL.

View Article and Find Full Text PDF

Mulibrey nanism (MUL) is a rare autosomal recessive multi-organ disorder characterized by severe prenatal-onset growth failure, infertility, cardiopathy, risk for tumors, fatty liver, and type 2 diabetes. MUL is caused by loss-of-function mutations in TRIM37, which encodes an E3 ubiquitin ligase belonging to the tripartite motif (TRIM) protein family and having both peroxisomal and nuclear localization. We describe a congenic Trim37 knock-out mouse (Trim37(-/-)) model for MUL.

View Article and Find Full Text PDF

USF1 (upstream stimulatory factor 1) is a transcription factor associated with familial combined hyperlipidemia and coronary artery disease in humans. However, whether USF1 is beneficial or detrimental to cardiometabolic health has not been addressed. By inactivating USF1 in mice, we demonstrate protection against diet-induced dyslipidemia, obesity, insulin resistance, hepatic steatosis, and atherosclerosis.

View Article and Find Full Text PDF

Reports on the retention of somatic cell memory in induced pluripotent stem cells (iPSCs) have complicated the selection of the optimal cell type for the generation of iPSC biobanks. To address this issue we compared transcriptomic, epigenetic, and differentiation propensities of genetically matched human iPSCs derived from fibroblasts and blood, two tissues of the most practical relevance for biobanking. Our results show that iPSC lines derived from the same donor are highly similar to each other.

View Article and Find Full Text PDF

Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown.

View Article and Find Full Text PDF

Mutations in the CLN1 gene that encodes Palmitoyl protein thioesterase 1 (PPT1) or CLN1, cause Infantile NCL (INCL, MIM#256730). PPT1 removes long fatty acid chains such as palmitate from modified cysteine residues of proteins. The data shown here result from isolated protein complexes from PPT1-expressing SH-SY5Y stable cells that were subjected to single step affinity purification coupled to mass spectrometry (AP-MS).

View Article and Find Full Text PDF

Unlabelled: Neuronal ceroid lipofuscinoses (NCL) are a group of inherited progressive childhood disorders, characterized by early accumulation of autofluorescent storage material in lysosomes of neurons or other cells. Clinical symptoms of NCL include: progressive loss of vision, mental and motor deterioration, epileptic seizures and premature death. CLN1 disease (MIM#256730) is caused by mutations in the CLN1 gene, which encodes palmitoyl protein thioesterase 1 (PPT1).

View Article and Find Full Text PDF

Generation of validated human induced pluripotent stem cells (iPSCs) for biobanking is essential for exploring the full potential of iPSCs in disease modeling and drug discovery. Peripheral blood mononuclear cells (PBMCs) are attractive targets for reprogramming, because blood is collected by a routine clinical procedure and is a commonly stored material in biobanks. Generation of iPSCs from blood cells has previously been reported using integrative retroviruses, episomal Sendai viruses, and DNA plasmids.

View Article and Find Full Text PDF

Neuronal ceroid lipofuscinoses (NCLs), a group of genetically distinct fatal neurodegenerative disorders with no treatment or cure, are clinically characterised by progressive motor and visual decline leading to premature death. While the underlying pathological mechanisms are yet to be precisely determined, the diseases share several common features including inflammation, lysosomal lipofuscin deposits and lipid abnormalities. An important hallmark of most common neurodegenerative disorders including Alzheimer's, Parkinson's and motor neuron diseases is deregulation of biologically active metal homeostasis.

View Article and Find Full Text PDF

Neuronal ceroid lipofuscinoses (NCL) are the most common inherited progressive encephalopathies of childhood. One of the most prevalent forms of NCL, Juvenile neuronal ceroid lipofuscinosis (JNCL) or CLN3 disease (OMIM: 204200), is caused by mutations in the CLN3 gene on chromosome 16p12.1.

View Article and Find Full Text PDF

Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14.

View Article and Find Full Text PDF

Both CLN1 and CLN5 deficiencies lead to severe neurodegenerative diseases of childhood, known as neuronal ceroid lipofuscinoses (NCLs). The broadly similar phenotypes of NCL mouse models, and the potential for interactions between NCL proteins, raise the possibility of shared or convergent disease mechanisms. To begin addressing these issues, we have developed a new mouse model lacking both Cln1 and Cln5 genes.

View Article and Find Full Text PDF

Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of childhood characterized by selective death of cortical neurons. Insulin-like growth factor 1 (IGF-1) is important in embryonic development and is considered as a potential therapeutic agent for several disorders of peripheral and central nervous systems. In circulation IGF-1 is mainly bound to its carrier protein IGFBP-3.

View Article and Find Full Text PDF

The neuronal ceroid lipofuscinoses constitute the most common group of childhood neurodegenerative disorders. These devastating disorders still remain without effective treatment. The use of animal models has provided significant information about NCL pathogenesis, highlighting early glial activation and neuron loss in specific brain regions of affected animals.

View Article and Find Full Text PDF

CLN3 is an endosomal/lysosomal transmembrane protein mutated in classical juvenile onset neuronal ceroid lipofuscinosis, a fatal inherited neurodegenerative lysosomal storage disorder. The function of CLN3 in endosomal/lysosomal events has remained elusive due to poor understanding of its interactions in these compartments. It has previously been shown that the localisation of late endosomal/lysosomal compartments is disturbed in cells expressing the most common disease-associated CLN3 mutant, CLN3∆ex7-8 (c.

View Article and Find Full Text PDF

CLN5 disease, late infantile variant phenotype neuronal ceroid lipofuscinosis, is a severe neurodegenerative disease caused by mutations in the CLN5 gene, which encodes a lysosomal protein of unknown function. Cln5-deficiency in mice leads to loss of thalamocortical neurons, and glial activation, but the underlying mechanisms are poorly understood. We have now studied the gene expression of Cln5 in the mouse brain and show that it increases gradually with age and differs between neurons and glia, with the highest expression in microglia.

View Article and Find Full Text PDF

Neuronal ceroid lipofuscinoses (NCLs) constitute a group of progressive neurodegenerative disorders resulting from mutations in at least eight different genes. Mutations in the most recently identified NCL gene, MFSD8/CLN7, underlie a variant of late-infantile NCL (vLINCL). The MFSD8/CLN7 gene encodes a polytopic protein with unknown function, which shares homology with ion-coupled membrane transporters.

View Article and Find Full Text PDF

Mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been shown to predispose to pituitary adenoma predisposition, a condition characterized by growth hormone (GH)-secreting pituitary tumors. To study AIP-mediated tumorigenesis, we generated an Aip mouse model. Heterozygous mice developed normally but were prone to pituitary adenomas, in particular to those secreting GH.

View Article and Find Full Text PDF
Article Synopsis
  • Neuronal ceroid lipofuscinoses (NCLs) are inherited neurodegenerative disorders in children caused by mutations in various genes, including the CLN5 gene linked to the Finnish variant of late infantile NCL.
  • The study investigates the properties of the CLN5 protein, revealing that it is processed and localizes to lysosomes, with some forms of CLN5 bypassing traditional trafficking routes.
  • Disease-causing mutations in CLN5 disrupt its lysosomal targeting, but the correlation between lysosomal targeting level and disease onset suggests additional functions for CLN5 outside of lysosomes, aiding in future therapeutic planning.
View Article and Find Full Text PDF

Background: Neuronal ceroid lipofuscinoses (NCLs) comprise at least eight genetically characterized neurodegenerative disorders of childhood. Despite of genetic heterogeneity, the high similarity of clinical symptoms and pathology of different NCL disorders suggest cooperation between different NCL proteins and common mechanisms of pathogenesis. Here, we have studied molecular interactions between NCL proteins, concentrating specifically on the interactions of CLN5, the protein underlying the Finnish variant late infantile form of NCL (vLINCLFin).

View Article and Find Full Text PDF