Publications by authors named "Jalal M Fadili"

This article proposes a new algorithm to compute the projection on the set of images whose total variation is bounded by a constant. The projection is computed through a dual formulation that is solved by first order non-smooth optimization methods. This yields an iterative algorithm that applies iterative soft thresholding to the dual vector field, and for which we establish convergence rate on the primal iterates.

View Article and Find Full Text PDF

We propose an image deconvolution algorithm when the data is contaminated by Poisson noise. The image to restore is assumed to be sparsely represented in a dictionary of waveforms such as the wavelet or curvelet transforms. Our key contributions are as follows.

View Article and Find Full Text PDF

In order to denoise Poisson count data, we introduce a variance stabilizing transform (VST) applied on a filtered discrete Poisson process, yielding a near Gaussian process with asymptotic constant variance. This new transform, which can be deemed as an extension of the Anscombe transform to filtered data, is simple, fast, and efficient in (very) low-count situations. We combine this VST with the filter banks of wavelets, ridgelets and curvelets, leading to multiscale VSTs (MS-VSTs) and nonlinear decomposition schemes.

View Article and Find Full Text PDF

In a recent paper, a method called morphological component analysis (MCA) has been proposed to separate the texture from the natural part in images. MCA relies on an iterative thresholding algorithm, using a threshold which decreases linearly towards zero along the iterations. This paper shows how the MCA convergence can be drastically improved using the mutual incoherence of the dictionaries associated to the different components.

View Article and Find Full Text PDF

A novel Bayesian nonparametric estimator in the Wavelet domain is presented. In this approach, a prior model is imposed on the wavelet coefficients designed to capture the sparseness of the wavelet expansion. Seeking probability models for the marginal densities of the wavelet coefficients, the new family of Bessel K forms (BKF) densities are shown to fit very well to the observed histograms.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session14mtb9copslvq1j71rb28rcfbptkr5ba): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once