Publications by authors named "Jalahalli M Siddesha"

Angiotensin converting enzyme (ACE), neutral endopeptidase (NEP) and aminopeptidase N (APN) are responsible for generation of vasoactive peptides that regulates vasoconstriction, vasodilation and natriuresis, which altogether regulate blood pressure. Cumulative inhibition of ACE, NEP and APN effectively blocks the progression of respective pathways. In this study, N-methylated peptide inhibitors F-N(Me)H-L, V-N(Me)F-R and R-N(Me)V-Y were synthesized against ACE, NEP and APN respectively, using their respective physiological substrates.

View Article and Find Full Text PDF

Hypertension is the fundamental cause of cardiovascular and cerebrovascular disorders. Several natural and synthetic peptides are being used as antihypertensive agents, which target angiotensin converting enzyme (ACE), the master regulator of angiotensin (Ang) II production. In this study, we have evaluated ACE-inhibitory potential of the tripeptide l-Phenylalanyl-d-Histidyl-l-Leucine (l-Phe-d-His-l-Leu) in vitro and its antihypertensive effect in rat model of dexamethasone-induced hypertension.

View Article and Find Full Text PDF

TRAF3IP2 (TRAF3 interacting protein 2; previously known as CIKS or Act1) is a key intermediate in the normal inflammatory response and the pathogenesis of various autoimmune and inflammatory diseases. Induction of TRAF3IP2 activates IκB kinase (IKK)/NF-κB, JNK/AP-1, and c/EBPβ and stimulates the expression of various inflammatory mediators with negative myocardial inotropic effects. To investigate the role of TRAF3IP2 in heart disease, we generated a transgenic mouse model with cardiomyocyte-specific TRAF3IP2 overexpression (TRAF3IP2-Tg).

View Article and Find Full Text PDF
Article Synopsis
  • Atherosclerosis, which leads to heart attacks and strokes, is influenced by inflammation, and TRAF3IP2 might be a key player in plaque formation.
  • TRAF3IP2/ApoE double knockout mice showed a decrease in plaque area and necrotic core, along with increased collagen and smooth muscle cell content compared to controls.
  • The study found that the absence of TRAF3IP2 reduced inflammatory cytokines and adhesion molecules, indicating it contributes significantly to the development of atherosclerosis.
View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease.

View Article and Find Full Text PDF

Aberrant activation of the renin-angiotensin-aldosterone system (RAAS) contributes to adverse cardiac remodeling and eventual failure. Here we investigated whether TRAF3 Interacting Protein 2 (TRAF3IP2), a redox-sensitive cytoplasmic adaptor molecule and an upstream regulator of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), mediates aldosterone-induced cardiac hypertrophy and fibrosis. Wild type (WT) and TRAF3IP2-null mice were infused with aldosterone (0.

View Article and Find Full Text PDF

The omega-3 polyunsaturated fatty acids (ω-3 fatty acids) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been reported to inhibit or delay the progression of cardiovascular diseases, including myocardial fibrosis. Recently we reported that angiotensin II (Ang II) promotes cardiac fibroblast (CF) migration by suppressing the MMP regulator reversion-inducing-cysteine-rich protein with Kazal motifs (RECK), through a mechanism dependent on AT1, ERK, and Sp1. Here we investigated the role of miR-21 in Ang II-mediated RECK suppression, and determined whether the ω-3 fatty acids reverse these effects.

View Article and Find Full Text PDF

Objectives: Lipoxygenases (LOX) are the key enzymes involved in the biosynthesis of leukotrienes and reactive oxygen species, which are implicated in pathophysiology of inflammatory disorders. This study was conducted to evaluate the inhibitory effect of water-soluble antioxidant ascorbic acid and its lipophilic derivative, ascorbic acid 6-palmitate (Vcpal) on polymorphonuclear lymphocyte 5-LOX and soybean 15-LOX (sLOX) in vitro.

Methods: LOX activity was determined by measuring the end products, 5-hydroperoxy eicosatetraenoic acid (5-HETE) and lipid hydroperoxides, by spectrophotometric and high performance liquid chromatography methods.

View Article and Find Full Text PDF

The pathogenesis of cardiac fibrosis and adverse remodeling is thought to involve the ROS-dependent induction of inflammatory cytokines and matrix metalloproteinases (MMPs), and the activation and migration of cardiac fibroblasts (CF). Here we investigated the role of RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), a unique membrane-anchored MMP regulator, on IL-18-induced CF migration, and the effect of acetylsalicylic acid (ASA) on this response. In a Matrigel invasion assay, IL-18-induced migration of primary mouse CF was dependent on both IKK/NF-κB- and JNK/AP-1-mediated MMP9 induction and Sp1-mediated RECK suppression, mechanisms that required Nox4-dependent H(2)O(2) generation.

View Article and Find Full Text PDF

Sustained induction and activation of matrixins (matrix metalloproteinases or MMPs), and the destruction and deposition of extracellular matrix (ECM), are the hallmarks of cardiac fibrosis. The reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is a unique membrane-anchored endogenous MMP regulator. We hypothesized that elevated angiotensin II (Ang II), which is associated with fibrosis in the heart, differentially regulates MMPs and RECK both in vivo and in vitro.

View Article and Find Full Text PDF

TRAF3IP2 is a cytoplasmic adapter protein and an upstream regulator of IKK/NF-κB and JNK/AP-1. Here we demonstrate for the first time that the proinflammatory cytokine interleukin (IL)-18 induces TRAF3IP2 expression in primary cardiac fibroblasts (CF) in a Nox4/hydrogen peroxide-dependent manner. Silencing TRAF3IP2 using a phosphorothioated, 2'-O-methyl modified, cholesterol-tagged TRAF3IP2 siRNA duplex markedly attenuated IL-18-induced NF-κB and AP-1 activation and CF migration.

View Article and Find Full Text PDF

Chronic elevation of angiotensin (Ang)-II can lead to myocardial inflammation, hypertrophy and cardiac failure. The adaptor molecule CIKS (connection to IKK and SAPK/JNK) activates the IκB kinase/nuclear factor (NF)-κB and JNK/activator protein (AP)-1 pathways in autoimmune and inflammatory diseases. Since Ang-II is a potent activator of NF-κB and AP-1, we investigated whether CIKS is critical in Ang-II-mediated cardiac hypertrophy.

View Article and Find Full Text PDF

This study investigates the effect of Artocarpus altilis leaf extracts on angiotensin-converting enzyme (ACE) activity. Among the extracts tested, hot ethanol extract exhibited a potent ACE-inhibitory activity with an IC₅₀ value of 54.08 ± 0.

View Article and Find Full Text PDF

In the present study, we describe the purification and characterization of a metalloprotease 'trimarin' from Trimeresurus malabaricus snake venom. Trimarin is a single-chain basic protein, with a molecular mass of 29.6kDa.

View Article and Find Full Text PDF

The present study evaluated the radical scavenging and angiotensin converting enzyme (ACE) inhibitory activity of cold and hot aqueous extracts of Ficus racemosa (Moraceae) stem bark. The extracts were standardized using HPLC. Radical scavenging activity was determined using 1,1-diphenyl-2-picrylhydrazyl radical and angiotensin converting enzyme inhibitory activity using rabbit lung and partially purified porcine kidney ACE.

View Article and Find Full Text PDF