Severe injuries to skin including hypodermis require full-thickness skin replacement. Here, we bioengineered a tri-layered human skin substitute (TLSS) containing the epidermis, dermis, and hypodermis. The hypodermal layer was generated by differentiation of human adipose stem cells (ASC) in a collagen type I hydrogel and combined with a prevascularized dermis consisting of human dermal microvascular endothelial cells and fibroblasts, which arranged into a dense vascular network.
View Article and Find Full Text PDFUnlabelled: Molecular and mechanical interactions with the 3D extracellular matrix are essential for cell functions such as survival, proliferation, migration, and differentiation. Thermo-responsive biomimetic polyisocyanopeptide (PIC) hydrogels are promising new candidates for 3D cell, tissue, and organ cultures. This is a synthetic, thermo-responsive and stress-stiffening material synthesized via polymerization of the corresponding monomers using a nickel perchlorate as a catalyst.
View Article and Find Full Text PDFIn recent years, extracellular vesicles (EVs) have become a subject of intense study. These membrane-enclosed spherical structures are secreted by almost every cell type and are engaged in the transport of cellular content (cargo) from parental to target cells. The impact of EVs transfer has been observed in many vital cellular processes including cell-to-cell communication and immune response modulation; thus, a fast and precise characterization of EVs may be relevant for both scientific and diagnostic purposes.
View Article and Find Full Text PDFPerception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells.
View Article and Find Full Text PDFPurpose: The need for clinically applicable skin substitutes continues to be a matter of fact. Hypothetically, a laboratory grown autologous skin analog with near normal architecture might be a suitable approach to yield both satisfactory functional and cosmetic long-term results. In this study, we explored the use of human endothelial cells derived from freshly isolated adipose stromal vascular fraction (SVF) in a three-dimensional (3D) co-culture model of vascularized bio-engineered skin substitute.
View Article and Find Full Text PDF