Publications by authors named "Jakub Kopycinski"

Background & Aims: The induction of effective CD8+ T cells is thought to play a critical role in the functional cure of chronic hepatitis B (CHB). Additionally, the use of checkpoint inhibitors is being evaluated to overcome T-cell dysfunction during CHB.

Methods: A chimpanzee adenoviral vector (ChAdOx1-HBV) and a Modified vaccinia Ankara boost (MVA-HBV) encoding the inactivated polymerase, core, and S region from a consensus genotype C HBV were studied.

View Article and Find Full Text PDF

There are varying data concerning the effect of prior anti-vector immunity on the T-cell response induced by immunisation with an identical vectored vaccine containing a heterologous antigen insert. To determine whether prior exposure to ChAdOx1-SARS-CoV2 immunisation (Vaxzevria) impacts magnitudes of antigen-specific T-cell responses elicited by subsequent administration of the same viral vector (encoding HBV antigens, ChAdOx1-HBV), healthy volunteers that had received Vaxzevria (n = 15) or the Pfizer or Moderna mRNA COVID-19 vaccine (n = 11) between 10 and 18 weeks prior were recruited to receive a single intramuscular injection of ChAdOx1-HBV. Anti-ChAdOx1-neutralising antibody titers were determined, and vector or insert-specific T-cell responses were measured by a gamma-interferon ELISpot and intracellular cytokine staining (ICS) assay using multiparameter flow cytometry.

View Article and Find Full Text PDF

'Kick and kill' cure strategies aim to induce HIV protein expression in latently infected cells (kick), and thus trigger their elimination by cytolytic T cells (kill). In the Research in Viral Eradication of HIV Reservoirs trial (NCT02336074), people diagnosed with primary HIV infection received immediate antiretroviral therapy (ART) and were randomised 24 weeks later to either a latency-reversing agent, vorinostat, together with ChAdV63.HIVconsv and MVA.

View Article and Find Full Text PDF

We look into dark solitons in a quasi-1D dipolar Bose gas and in a quantum droplet. We derive the analytical solitonic solution of a Gross-Pitaevskii-like equation accounting for beyond mean-field effects. The results show there is a certain critical value of the dipolar interactions, for which the width of a motionless soliton diverges.

View Article and Find Full Text PDF

We assessed a cohort of people living with human immunodeficiency virus (PLWH) (n = 110) and HIV negative controls (n = 64) after 1, 2 or 3 SARS-CoV-2 vaccine doses. At all timepoints, PLWH had significantly lower neutralizing antibody (nAb) titers than HIV-negative controls. We also observed a delayed development of neutralization in PLWH that was underpinned by a reduced frequency of spike-specific memory B cells (MBCs).

View Article and Find Full Text PDF

This review article describes our simplified biophysical model for the response of a group of cells to ionizing radiation. The model, which is a product of 10 years of studies, acts as (a) a comprehensive stochastic approach based on the Monte Carlo simulation with a probability tree and (b) the thereof derived detailed deterministic models describing the selected biophysical and radiobiological phenomena in an analytical manner. Specifically, the presented model describes effects such as the risk of neoplastic transformation of cells relative to the absorbed radiation dose, the dynamics of tumor development, the priming dose effect (also called the Raper-Yonezawa effect) based on the introduced adaptive response approach, and the bystander effect.

View Article and Find Full Text PDF

People living with HIV (PLWH) on suppressive antiretroviral therapy (ART) can have residual immune dysfunction and often display poorer responses to vaccination. We assessed in a cohort of PLWH (n=110) and HIV negative controls (n=64) the humoral and spike-specific B-cell responses following 1, 2 or 3 SARS-CoV-2 vaccine doses. PLWH had significantly lower neutralizing antibody (nAb) titers than HIV-negative controls at all studied timepoints.

View Article and Find Full Text PDF

T cell exhaustion develops in human immunodeficiency virus (HIV) infection due to chronic viral antigenic stimulation. This adaptive response primarily affects virus-specific CD8 T cells, which may remain dysfunctional despite viral load-reducing antiretroviral therapy; however, abnormalities may also be evident in non-HIV-specific populations. Both could limit the efficacy of cell therapies against viral reservoirs.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to examine the effects of HIV-remission strategies, specifically a "kick-and-kill" approach, on neuro-axonal injury as measured by plasma neurofilament light (NfL) levels in participants of the RIVER trial.
  • Researchers measured plasma NfL, HIV-1 RNA, and HIV-1 DNA in participants who received either standard ART or the additional kick-and-kill regimen; they found no significant differences in NfL levels between the two groups over time.
  • While increased HIV-specific T-cell responses were noted in those receiving the kick-and-kill strategy, these immune responses did not correlate with NfL levels, indicating that this approach may
View Article and Find Full Text PDF
Article Synopsis
  • There is an urgent need to understand how people living with HIV respond to SARS-CoV-2 to improve their health strategies.
  • Most individuals with well-managed HIV can still mount a strong immune response to SARS-CoV-2, with similar humoral and T cell responses as those without HIV.
  • The effectiveness of T cell responses in HIV-positive individuals is influenced by their CD4 T cell levels, suggesting that insufficient immune recovery could impact their ability to fight off infections and respond to vaccines.
View Article and Find Full Text PDF
Article Synopsis
  • The swift development of SARS-CoV-2 vaccines highlights a successful global collaboration in research, utilizing innovative technologies.
  • All approved vaccines show high efficacy and safety but there is still a strong need for more vaccine candidates to complete phase 3 clinical trials.
  • As SARS-CoV-2 is likely to become endemic, researchers are focusing on modifying vaccine designs to effectively address new variants while examining immunogenicity, dosing, and efficacy in their studies.
View Article and Find Full Text PDF
Article Synopsis
  • There is a critical need to study how people living with HIV (PLWH) respond immune-wise to SARS-CoV-2 to help manage their health risks.
  • Most PLWH on antiretroviral therapy (ART) develop functional immune responses to the virus, with similar humoral and T cell responses as those without HIV, lasting for 5-7 months.
  • The strength of these responses is influenced by factors like the size of naive CD4 T cell pools, suggesting that how well immune systems recover on ART may affect vaccine effectiveness and individual health management during COVID-19.
View Article and Find Full Text PDF
Article Synopsis
  • There is a critical need to understand immune responses to SARS-CoV-2 in people living with HIV (PLWH) to improve risk management strategies, especially since some PLWH may still experience immune deficiencies despite treatment.
  • A study compared the immune responses of PLWH on antiretroviral therapy (ART) to those of HIV-negative individuals after mild COVID-19, finding that both groups developed comparable levels of antibodies and T cell responses against the virus.
  • However, the immune response in PLWH was influenced by their CD4:CD8 ratio and the size of their naive CD4 T cell pool, which may impact their long-term immunity and the effectiveness of vaccination efforts against SARS-CoV-2.
View Article and Find Full Text PDF

Background: Antiretroviral therapy (ART) cannot cure HIV infection because of a persistent reservoir of latently infected cells. Approaches that force HIV transcription from these cells, making them susceptible to killing-termed kick and kill regimens-have been explored as a strategy towards an HIV cure. RIVER is the first randomised trial to determine the effect of ART-only versus ART plus kick and kill on markers of the HIV reservoir.

View Article and Find Full Text PDF

Despite an efficacious prophylactic human papillomavirus (HPV) vaccine there is still a considerable global burden of HPV-related disease. Therapeutic vaccines that could prevent cancers in at-risk women are urgently needed. Most candidate therapeutic vaccines have focused on two high-risk (hr) HPV genotypes, 16 and 18, and two viral targets, E6 and E7, which may limit global coverage and efficacy.

View Article and Find Full Text PDF

HIV-1 vaccine functioning relies on successful induction of broadly neutralizing antibodies (bNAbs). CXCR3- circulatory T-follicular helper (cTfh) cells are necessary for inducing B-cells for generating bNAbs. Recent studies have suggested that CXCR3+ Tfh cells might also influence bNAb production.

View Article and Find Full Text PDF

Despite extensive research on the mechanisms of HLA-mediated immune control of HIV-1 pathogenesis, it is clear that much remains to be discovered, as exemplified by protective HLA alleles like HLA-B*81 which are associated with profound protection from CD4+ T cell decline without robust control of early plasma viremia. Here, we report on additional HLA class I (B*1401, B*57, B*5801, as well as B*81), and HLA class II (DQB1*02 and DRB1*15) alleles that display discordant virological and immunological phenotypes in a Zambian early infection cohort. HLA class I alleles of this nature were also associated with enhanced immune responses to conserved epitopes in Gag.

View Article and Find Full Text PDF

Nearly 3 million people worldwide are coinfected with HIV and HCV. Affordable strategies for prevention are needed. We developed a novel vaccination regimen involving replication-defective and serologically distinct chimpanzee adenovirus (ChAd3, ChAd63) vector priming followed by modified vaccinia Ankara (MVA) boosts, for simultaneous delivery of HCV non-structural (NSmut) and HIV-1 conserved (HIVconsv) region immunogens.

View Article and Find Full Text PDF

A key aspect to finding an efficacious human immunodeficiency virus (HIV) vaccine is the optimization of vaccine schedules that can mediate the efficient maturation of protective immune responses. In the present study, we investigated the effect of alternate booster regimens on the immune responses to a candidate HIV-1 clade C CN54gp140 envelope protein, which was coadministered with the TLR4-agonist glucopyranosyl lipid A-aqueous formulation. Twelve study participants received a common three-dose intramuscular priming series followed by a final booster at either 6 or 12 months.

View Article and Find Full Text PDF

Introduction: Vaccines may be key components of a curative strategy for HIV-1. We investigated whether a novel immunogen, HIVconsv, designed to re-direct T cell responses to conserved viral epitopes, could impact the HIV-1 reservoir in chronic antiretroviral therapy (ART)-treated subjects when delivered by modified vaccinia virus Ankara (MVA).

Methods: Nineteen virologically suppressed individuals were randomized to receive vaccinations with MVA.

View Article and Find Full Text PDF

There remains an urgent need for a prophylactic HIV vaccine. We compared combined MVA and adjuvanted gp140 to sequential MVA/gp140 after DNA priming. We expected Env-specific CD4+ T-cells after DNA and MVA priming, and Env-binding antibodies in 100% individuals after boosting with gp140 and that combined vaccines would not compromise safety and might augment immunogenicity.

View Article and Find Full Text PDF

Background:  We report the first-in-human safety and immunogenicity assessment of a prototype intranasally administered, replication-competent Sendai virus (SeV)-vectored, human immunodeficiency virus type 1 (HIV-1) vaccine.

Methods:  Sixty-five HIV-1-uninfected adults in Kenya, Rwanda, and the United Kingdom were assigned to receive 1 of 4 prime-boost regimens (administered at 0 and 4 months, respectively; ratio of vaccine to placebo recipients, 12:4): priming with a lower-dose SeV-Gag given intranasally, followed by boosting with an adenovirus 35-vectored vaccine encoding HIV-1 Gag, reverse transcriptase, integrase, and Nef (Ad35-GRIN) given intramuscularly (SA); priming with a higher-dose SeV-Gag given intranasally, followed by boosting with Ad35-GRIN given intramuscularly (SA); priming with Ad35-GRIN given intramuscularly, followed by boosting with a higher-dose SeV-Gag given intranasally (AS); and priming and boosting with a higher-dose SeV-Gag given intranasally (SS).

Results:  All vaccine regimens were well tolerated.

View Article and Find Full Text PDF

We are developing a pan-clade HIV-1 T-cell vaccine HIVconsv, which could complement Env vaccines for prophylaxis and be a key to HIV cure. Our strategy focuses vaccine-elicited effector T-cells on functionally and structurally conserved regions (not full-length proteins and not only epitopes) of the HIV-1 proteome, which are common to most global variants and which, if mutated, cause a replicative fitness loss. Our first clinical trial in low risk HIV-1-negative adults in Oxford demonstrated the principle that naturally mostly subdominant epitopes, when taken out of the context of full-length proteins/virus and delivered by potent regimens involving combinations of simian adenovirus and poxvirus modified vaccinia virus Ankara, can induce robust CD8(+) T cells of broad specificities and functions capable of inhibiting in vitro HIV-1 replication.

View Article and Find Full Text PDF

Objectives: The ability of HIV-1 vaccine candidates MRKAd5, VRC DNA/Ad5 and ALVAC/AIDSVAX to elicit CD8 T cells with direct antiviral function was assessed and compared with HIV-1-infected volunteers.

Design: Adenovirus serotype 5 (Ad5)-based regimens MRKAd5 and VRC DNA/Ad5, designed to elicit HIV-1-specific T cells, are immunogenic but failed to prevent infection or impact on viral loads in volunteers infected subsequently. Failure may be due in part to a lack of CD8 T cells with effective antiviral functions.

View Article and Find Full Text PDF

Background: Strategies to enhance the immunogenicity of DNA vaccines in humans include i) co-administration of molecular adjuvants, ii) intramuscular administration followed by in vivo electroporation (IM/EP) and/or iii) boosting with a different vaccine. Combining these strategies provided protection of macaques challenged with SIV; this clinical trial was designed to mimic the vaccine regimen in the SIV study.

Methods: Seventy five healthy, HIV-seronegative adults were enrolled into a phase 1, randomized, double-blind, placebo-controlled trial.

View Article and Find Full Text PDF