Publications by authors named "Jakub Kajdanek"

The aim of this research was to select the fragments that make up the outer layer of the collagen IV (COL4A6) protein and to assess their potential usefulness for regenerative medicine. It was expected that because protein-protein interactions take place via contact between external domains, the set of peptides forming the outer sphere of collagen IV will determine its interaction with other proteins. Cellulose-immobilized protein fragment libraries treated with polyclonal anti-collagen IV antibodies were used to select the peptides forming the outer sphere of collagen IV.

View Article and Find Full Text PDF

Eight dipeptides containing antifibrinolytic agents (tranexamic acid, aminocaproic acid, 4-(aminomethyl)benzoic acid, and glycine-natural amino acids) were synthesized in a three-step process with good or very good yields. DMT/NMM/TsO (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate) was used as a coupling reagent. Hemolysis tests were used to study the effects of the dipeptides on blood components.

View Article and Find Full Text PDF

Nanocarriers are delivery platforms of drugs, peptides, nucleic acids and other therapeutic molecules that are indicated for severe human diseases. Gliomas are the most frequent type of brain tumor, with glioblastoma being the most common and malignant type. The current state of glioma treatment requires innovative approaches that will lead to efficient and safe therapies.

View Article and Find Full Text PDF

PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) is a transcriptional coactivator of many genes involved in energy management and mitochondrial biogenesis. PGC-1α expression is associated with cellular senescence, organismal aging, and many age-related diseases, including AMD (age-related macular degeneration), an important global issue concerning vision loss. We and others have developed a model of AMD pathogenesis, in which stress-induced senescence of retinal pigment epithelium (RPE) cells leads to AMD-related pathological changes.

View Article and Find Full Text PDF