Sample preparation remains a bottleneck for protein structure determination by cryo-electron microscopy. A frequently encountered issue is that proteins adsorb to the air-water interface of the sample in a limited number of orientations. This makes it challenging to obtain high-resolution reconstructions or may even cause projects to fail altogether.
View Article and Find Full Text PDFSpin in semiconductors facilitates magnetically controlled optoelectronic and spintronic devices. In metal halide perovskites (MHPs), doping magnetic ions is proven to be a simple and efficient approach to introducing a spin magnetic momentum. In this work, we present a facile metal ion doping protocol through the vapor-phase metal halide insertion reaction to the chemical vapor deposition (CVD)-grown ultrathin CsBiBr perovskites.
View Article and Find Full Text PDFMolecular qubits offer an attractive basis for quantum information processing, but challenges remain with regard to sustained coherence. Qubits based on clock transitions offer a method to improve the coherence times. We propose a general strategy for identifying molecules with high-frequency clock transitions in systems where a d electron is coupled to a crystal-field singlet state of an f configuration, resulting in an = ±1/2 ground state with strong hyperfine coupling.
View Article and Find Full Text PDFWe present a theoretical and experimental study of two tetracoordinate Co(II)-based complexes with semi-coordination interactions, , non-covalent interactions involving the central atom. We argue that such interactions enhance the thermal and structural stability of the compounds, making them appropriate for deposition on substrates, as demonstrated by their successful deposition on graphene. DC magnetometry and high-frequency electron spin resonance (HF-ESR) experiments revealed an axial magnetic anisotropy and weak intermolecular antiferromagnetic coupling in both compounds, supported by theoretical predictions from complete active space self-consistent field calculations complemented by N-electron valence state second-order perturbation theory (CASSCF-NEVPT2), and broken-symmetry density functional theory (BS-DFT).
View Article and Find Full Text PDFStudying the properties of complex molecules on surfaces is still mostly an unexplored research area because the deposition of the metal complexes has many pitfalls. Herein, we probed the possibility to produce surface hybrids by depositing a Co(II)-based complex with chalcone ligands on chemical vapor deposition (CVD)-grown graphene by a wet-chemistry approach and by thermal sublimation under high vacuum Samples were characterized by high-frequency electron spin resonance (HF-ESR), XPS, Raman spectroscopy, atomic force microscopy (AFM), and optical microscopy, supported with density functional theory (DFT) and complete active space self-consistent field (CASSCF)/N-electron valence second-order perturbation theory (NEVPT2) calculations. This compound's rationale is its structure, with several aromatic rings for weak binding and possible favorable - stacking onto graphene.
View Article and Find Full Text PDFThe scalability and stability of molecular qubits deposited on surfaces is a crucial step for incorporating them into upcoming electronic devices. Herein, we report on the preparation and characterisation of a molecular quantum bit, copper(ii)dibenzoylmethane [Cu(dbm)], deposited by a modified Langmuir-Schaefer (LS) technique onto a graphene-based substrate. A double LS deposition was used for the preparation of a few-layer-graphene (FLG) on a Si/SiO substrate with subsequent deposition of the molecules.
View Article and Find Full Text PDF