Publications by authors named "Jakub Holovsky"

The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For solar cells, the Urbach energy is found to be predictive of a material's minimal open-circuit-voltage deficit.

View Article and Find Full Text PDF

To gain insight into the properties of photovoltaic and light-emitting materials, detailed information about their optical absorption spectra is essential. Here, we elucidate the temperature dependence of such spectra for methylammonium lead iodide (CHNHPbI), with specific attention to its sub-band gap absorption edge (often termed Urbach energy). On the basis of these data, we first find clear further evidence for the universality of the correlation between the Urbach energy and open-circuit voltage losses of solar cells.

View Article and Find Full Text PDF

An improved contactless method of the measurement and evaluation of charge carrier profiles in polished wafers by infrared reflectance was developed. The sensitivity of optical reflectance to the incidence angle was theoretically analyzed. A grazing incident angle enhances sensitivity to doping profile parameters.

View Article and Find Full Text PDF

Optical absorptance spectroscopy of polycrystalline CHNHPbI films usually indicates the presence of a PbI phase, either as a preparation residue or due to film degradation, but gives no insight on how this may affect electrical properties. Here, we apply photocurrent spectroscopy to both perovskite solar cells and coplanar-contacted layers at various stages of degradation. In both cases, we find that the presence of a PbI phase restricts charge-carrier transport, suggesting that PbI encapsulates CHNHPbI grains.

View Article and Find Full Text PDF

This work compares structural and optical properties of silicon nanocrystals prepared by two fundamentally different methods, namely, electrochemical etching of Si wafers and low-pressure plasma synthesis, completed with a mechano-photo-chemical treatment. This treatment leads to surface passivation of the nanoparticles by methyl groups. Plasma synthesis unlike electrochemical etching allows selecting of the particle sizes.

View Article and Find Full Text PDF

A combination of photocurrent and photothermal spectroscopic techniques is applied to experimentally quantify the useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (μc-Si:H) films incorporating optimized metal nanoparticle arrays, located at the rear surface, for improved light trapping via resonant plasmonic scattering. The photothermal technique accounts for the total absorptance and the photocurrent signal accounts only for the photons absorbed in the μc-Si:H layer (useful absorptance); therefore, the method allows for independent quantification of the useful and parasitic absorptance of the plasmonic (or any other) light trapping structure. We demonstrate that with a 0.

View Article and Find Full Text PDF

The fundamental sheet conductance of graphene can be directly related to the product of its absorption coefficient, thickness and refractive index. The same can be done for graphene's fundamental opacity if the so-called thin-film limit is considered. Here, we test mathematically and experimentally the validity of this limit on graphene, as well as on thin metal and semiconductor layers.

View Article and Find Full Text PDF

Micro-Raman spectroscopy provides laterally resolved microstructural information for a broad range of materials. In this Letter, we apply this technique to tri-iodide (CH3NH3PbI3), tribromide (CH3NH3PbBr3), and mixed iodide-bromide (CH3NH3PbI3-xBrx) organic-inorganic halide perovskite thin films and discuss necessary conditions to obtain reliable data. We explain how to measure Raman spectra of pristine CH3NH3PbI3 layers and discuss the distinct Raman bands that develop during moisture-induced degradation.

View Article and Find Full Text PDF

Silicon heterojunction solar cells critically depend on the detailed properties of their amorphous/crystalline silicon interfaces. We report here on the use of attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy to gain precise insight into the vibrational properties of the surfaces and ultrathin layers present in such solar cells. We fabricate ATR prisms from standard silicon wafers similar to those used for device fabrication.

View Article and Find Full Text PDF

The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.

View Article and Find Full Text PDF
Article Synopsis
  • Solar cells using organometallic halide perovskite layers, specifically CH3NH3PbI3, show great potential for high efficiency in converting sunlight to energy.
  • Measurements reveal that these perovskite thin films have a high absorption coefficient and a sharply defined absorption spectrum, indicating strong electronic properties and a well-ordered microstructure.
  • However, exposure to moisture negatively affects the material's absorption at lower photon energies, suggesting changes in its composition.
View Article and Find Full Text PDF