Background: Bronchiolitis Obliterans Syndrome (BOS), a fibrotic airway disease that may develop after lung transplantation, conventionally relies on pulmonary function tests (PFTs) for diagnosis due to limitations of CT imaging. Deep neural networks (DNNs) have not previously been used for BOS detection. This study aims to train a DNN to detect BOS in CT scans using an approach tailored for low-data scenarios.
View Article and Find Full Text PDF