The Coronavirus (COVID-19) Disease Pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide, prompting a collective effort from the global scientific community to develop a vaccine against it. This study purports to investigate the influence of factors such as sex, age, type of vaccination (Comirnaty, BNT162b2, Pfizer Inc. or Vaxzevria, ChAdOx1-S, Oxford/AstraZeneca), and time since vaccine administration on the process of antibody production.
View Article and Find Full Text PDF1The necessity to preserve meniscal function prompts the research and development of novel treatment options, like three-dimensional (3D) bioprinting. However, bioinks for meniscal 3D bioprinting have not been extensively explored. Therefore, in this study, a bioink composed of alginate, gelatin, and carboxymethylated cellulose nanocrystal (CCNC) was formulated and evaluated.
View Article and Find Full Text PDFPurpose: The functional outcomes of arthroscopic matrix-based meniscus repair (AMMR) in patients two and five years after the treatment clearly show that the use of the collagen matrix and bone marrow aspirate creates favorable biological conditions for meniscus healing. This study not only provides ten follow-up results but also investigates biomolecular mechanisms governing the regenerative process.
Methods: Case series was based on data collected from patients who underwent AMMR procedure, starting with preoperatively through two-year and five-year till ten-year follow-up.
Articular cartilage and meniscus injuries are prevalent disorders with insufficient regeneration responses offered by available treatment methods. In this regard, 3D bioprinting has emerged as one of the most promising new technologies, offering novel treatment options. Additionally, the latest achievements from the fields of biomaterials and tissue engineering research identified constituents facilitating the creation of biocompatible scaffolds.
View Article and Find Full Text PDFIn recent years, significant progress has been observed in the field of skin bioprinting, which has a huge potential to revolutionize the way of treatment in injury and surgery. Furthermore, it may be considered as an appropriate platform to perform the assessment and screening of cosmetic and pharmaceutical formulations. Therefore, the objective of this paper was to review the latest advances in 3D bioprinting dedicated to skin applications.
View Article and Find Full Text PDFNowadays, nanostructures having tremendous chemical and physical properties are gaining attention in the biomedical industry. However, when they are prepared through classical methods (physical and chemical), they are often non-biocompatible and toxic. Considering the mentioned factors, in this research, organometallic silver nanostructures (OMAgNs) have been prepared by the green chemistry method using the acetone, methanol, and methanol-hexane-based extracts of the medicinally important plant .
View Article and Find Full Text PDFCarbon nanotubes (CNTs) are one of the most promising nanomaterials synthesized to date. Thanks to their unique mechanical, electronic, and optical properties, they have found a wide application in electronics in the production of biosensors and nanocomposites. The functionalization of multiwalled carbon nanotubes (MWCNTs) is aimed at making them biocompatible by adding hydrophilic groups on their surface, increasing their solubility and thus rendering them applicable in the regenerative medicine.
View Article and Find Full Text PDFCartilage and bone injuries are prevalent ailments, affecting the quality of life of injured patients. Current methods of treatment are often imperfect and pose the risk of complications in the long term. Therefore, tissue engineering is a rapidly developing branch of science, which aims at discovering effective ways of replacing or repairing damaged tissues with the use of scaffolds.
View Article and Find Full Text PDFSuperparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for wide variety of applications. Their unique properties render them highly applicable as MRI contrast agents, in magnetic hyperthermia or targeted drug delivery. SPIONs surface properties affect a whole array of parameters such as: solubility, toxicity, stability, biodistribution etc.
View Article and Find Full Text PDFChronic hepatitis B (CHB) is the cause of severe liver damage, cirrhosis, and hepatocellular carcinoma for over 240 million people worldwide. Nowadays, several types of treatment are being investigated, including immunotherapy using hepatitis B core antigen (HBcAg) assembled into highly immunogenic capsid-like particles (CLPs). Immunogenicity of plant-produced and purified HBcAg, administered parenterally or intranasally, was previously reported.
View Article and Find Full Text PDFThe nanoindentation method was applied to determine the elastic modulus and hardness of knee articular cartilage. Cartilage samples from both high weight bearing (HWB) and low weight bearing (LWB) femoral condyles were collected from patients diagnosed with osteoarthritis (OA). The mean elastic modulus of HWB cartilage was 4.
View Article and Find Full Text PDFBioengineered spider silk is a biomaterial that has exquisite mechanical properties, biocompatibility, and biodegradability. Iron oxide nanoparticles can be applied for the detection and analysis of biomolecules, target drug delivery, as MRI contrast agents and as therapeutic agents for hyperthermia-based cancer treatments. In this study, we investigated three bioengineered silks, MS1, MS2 and EMS2, and their potential to form a composite material with magnetic iron oxide nanoparticles (IONPs).
View Article and Find Full Text PDFMelanoma is responsible for the majority of deaths related to skin cancer. Worryingly, prognoses show an increasing number of melanoma cases each year worldwide. Radiotherapy, which is a cornerstone of cancer treatment, has proved to be useful but insufficient in melanoma management due to exceptionally high radioresistance of melanoma cells.
View Article and Find Full Text PDFCore-virus like particles (VLPs) assembly is a kinetically complex cascade of interactions between viral proteins, nanoparticle's surface and an ionic environment. Despite many in silico simulations regarding this process, there is still a lack of experimental data. The main goal of this study was to investigate the capsid protein of hepatitis B virus (HBc) assembly into virus-like particles with superparamagnetic iron oxide nanoparticles (SPIONs) as a magnetic core in relation to their characteristics.
View Article and Find Full Text PDFBrome mosaic virus (BMV) is a well-known plant virus representing single-stranded RNA (ssRNA) positive-sense viruses. It has been widely used as a model in multiple studies concerning plant virus biology, epidemiology and the application of viral capsids in nanotechnology. Herein, we describe a method for BMV purification based on ion-exchange and size-exclusion chromatography.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
November 2017
Brome mosaic virus (BMV) has been successfully loaded with different types of nanoparticles. However, studies concerning its application as a nanoparticle carrier demand high-purity virions in large amounts. Existing BMV purification protocols rely on multiple differential ultracentrifugation runs of the initially purified viral preparation.
View Article and Find Full Text PDFPurpose: The study was designed to investigate whether serum concentrations of leptin, resistin and adiponectin in obese and normal-weight patients with primary knee osteoarthritis (OA) correlate with clinical and radiological stages of the disease and percentage of total body fat.
Methods: Seventy-three patients with knee OA, divided into obese and normal-weight groups, were clinically evaluated according to the Knee Society Score (KSS), and radiologically assessed using Kellgren and Lawrence scale. The percentage of total body fat and some anthropometric data were also given.