Premise: Despite the high functional importance of endophytes, we still have limited understanding of the biotic and abiotic factors that influence colonization of plant hosts along major ecological gradients and lack quantitative estimates of their colonization extent. In this study, we hypothesized that the developmental stage of the ecosystem will affect the levels of bacterial and fungal endophytic assemblages in the foliar endosphere.
Methods: We quantified levels of bacterial and fungal endophytes in leaves of four plant hosts at four stages of vegetation succession using an optimized qPCR protocol with bacteria-specific 16S and fungi-targeting primers.
Benthic fluxes refer to the exchange rates of nutrients and other compounds between the water column and the sediment bed in aquatic ecosystems. Their quantification contributes to our understanding of aquatic ecosystem functioning. Near-bed hydrodynamics plays an important role at the sediment-water interface, especially in shallow lakes, but it is poorly considered by traditional measuring techniques of flux quantification, such as sediment incubations.
View Article and Find Full Text PDFElevated environmental levels of elements originating from anthropogenic activities threaten natural communities and public health, as these elements can persist and bioaccumulate in the environment. However, their environmental risks and bioaccumulation patterns are often habitat-, species- and element-specific. We studied the bioaccumulation patterns of 11 elements in seven freshwater taxa in post-mining habitats in the Czech Republic, ranging from less polluted mining ponds to highly polluted fly ash lagoons.
View Article and Find Full Text PDFDeposits of fly ash and other coal combustion wastes are common remnants of the energy industry. Despite their environmental risks from heavy metals and trace elements, they have been revealed as refuges for threatened terrestrial biodiversity. Surprisingly, freshwater biodiversity of fly ash sedimentation lagoons remains unknown despite such lack of knowledge strongly limits the efficient restoration of fly ash deposits.
View Article and Find Full Text PDFOrganic matter (OM) quantity, quality, and nutrient dynamics within twelve shallow lakes in the Czech Republic were assessed in the context of catchment soil pH and iron (Fe) concentration. The catchments of the lakes were classified into two categories: (i) slightly acidic (soil pH = 5.1-6.
View Article and Find Full Text PDFAbstractFollowing publication of the original article [1], the author reported an error in Fig. 3.
View Article and Find Full Text PDFBackground: Utricularia are rootless aquatic carnivorous plants which have recently attracted the attention of researchers due to the peculiarities of their miniaturized genomes. Here, we focus on a novel aspect of Utricularia ecophysiology-the interactions with and within the complex communities of microorganisms colonizing their traps and external surfaces.
Results: Bacteria, fungi, algae, and protozoa inhabit the miniature ecosystem of the Utricularia trap lumen and are involved in the regeneration of nutrients from complex organic matter.
Lake Medard is an oligotrophic post-mining lake characterised by ferruginous bottom waters, with marked redox gradients resulting from iron (Fe) and nitrogen (N) speciation and accompanying depth-dependent variations in the abundance of volatile fatty acids (VFAs), pH and alkalinity. The lacustrine system is meromictic, featuring a dysoxic hypolimnion and an anoxic monimolimnion with relatively high concentrations of sulfate (SO42-, 19 ± 2 mM) and Fe(ii) (127 ± 17 μM). An increase in dissolved manganese is also observed with increasing depth, together with a general lack of sulfide, which can only be detected at the sediment-water interface at concentrations of ∼0.
View Article and Find Full Text PDFThis study focuses on the quantification of the impact of potentially eroded topsoil particles on the available watercourse P concentration. We used 56 topsoil samples for determining the relation existing between the molar ratio of sorption-active Fe- and Al-(hydr)oxides to plant available P, as determined by the commonly used oxalate and Mehlich 3 extractions (P). Our sample set covers the most common combinations of non-calcareous soil types, land and agricultural uses.
View Article and Find Full Text PDFPolyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion.
View Article and Find Full Text PDFA rapid warming in Himalayas is predicted to increase plant upper distributional limits, vegetation cover and abundance of species adapted to warmer climate. We explored these predictions in NW Himalayas, by revisiting uppermost plant populations after ten years (2003-2013), detailed monitoring of vegetation changes in permanent plots (2009-2012), and age analysis of plants growing from 5500 to 6150 m. Plant traits and microclimate variables were recorded to explain observed vegetation changes.
View Article and Find Full Text PDFCadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including nature-like light and temperature cycles, and a low biomass to water ratio.
View Article and Find Full Text PDFBackground And Aims: Rootless carnivorous plants of the genus Utricularia are important components of many standing waters worldwide, as well as suitable model organisms for studying plant-microbe interactions. In this study, an investigation was made of the importance of microbial dinitrogen (N2) fixation in the N acquisition of four aquatic Utricularia species and another aquatic carnivorous plant, Aldrovanda vesiculosa.
Methods: 16S rRNA amplicon sequencing was used to assess the presence of micro-organisms with known ability to fix N2.
Correct identification of P forms together with their main Fe and Al binding partners in non-calcareous sediments is of crucial importance for evaluation of P cycling in water bodies. In this paper, we assess extraction methods frequently used for this purpose, i.e.
View Article and Find Full Text PDFRootless aquatic carnivorous Utricularia exude up to 25% of their photosynthates into the trap lumen, which also harbours a complex microbial community thought to play a role in enhancing Utricularia nutrient acquisition. We investigated the composition of organic carbon in the trap fluid, its availability for microbial uptake, the influence of plant nutrient status and trap age on its biodegradability, and the composition of prokaryotic assemblages within the traps of three aquatic Utricularia species. Using ion chromatography and basal respiration rate measurements we confirmed that up to 30% of total dissolved organic carbon in Utricularia trap fluid in oligotrophic conditions was easily biodegradable compounds commonly found in plant root exudates (mainly glucose, fructose and lactate).
View Article and Find Full Text PDFThe rootless, aquatic Utricularia species belong to the largest and most cosmopolitan carnivorous plant genus. Populations of Utricularia plants are an important component of many standing, nutrient-poor, and humic waters. Carbon (C) allocation is an aspect of Utricularia's ecophysiology that has not been studied previously and there is considerable uncertainty about the functional and ecological benefit of the trap-associated microbial community and the potential role played by C exudation in enhancing plant-microbe interactions.
View Article and Find Full Text PDFRelease of reactive (phosphate-like) phosphorus (P) from freshwater sediments represents a significant internal P source for many lakes. Hypolimnetic P release occurs under reducing conditions that cause reductive dissolution of ferric hydroxide [Fe(OH)3]. This hypolimnetic P release may be naturally low or artificially reduced by sediment with naturally high or artificially elevated concentrations of aluminum hydroxide [Al(OH)3].
View Article and Find Full Text PDF