Publications by authors named "Jakub Abramson"

The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood.

View Article and Find Full Text PDF

Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta.

View Article and Find Full Text PDF

Autoimmune polyendocrine syndrome type 1 (APS-1) is caused by mutations in the autoimmune regulator (AIRE) gene. Most patients present with severe chronic mucocutaneous candidiasis and organ-specific autoimmunity from early childhood, but the clinical picture is highly variable. AIRE is crucial for negative selection of T cells, and scrutiny of different patient mutations has previously highlighted many of its molecular mechanisms.

View Article and Find Full Text PDF

Intestinal epithelial cells have the capacity to upregulate MHCII molecules in response to certain epithelial-adhesive microbes, such as segmented filamentous bacteria (SFB). However, the mechanism regulating MHCII expression as well as the impact of epithelial MHCII-mediated antigen presentation on T cell responses targeting those microbes remains elusive. Here, we identify the cellular network that regulates MHCII expression on the intestinal epithelium in response to SFB.

View Article and Find Full Text PDF

Development of immunocompetent T cells in the thymus is required for effective defence against all types of pathogens, including viruses, bacteria and fungi. To this end, T cells undergo a very strict educational program in the thymus, during which both non-functional and self-reactive T cell clones are eliminated by means of positive and negative selection.Thymic epithelial cells (TECs) have an indispensable role in these processes, and previous studies have shown the notable heterogeneity of these cells.

View Article and Find Full Text PDF

Conventional methods for humanizing animal-derived antibodies involve grafting their complementarity-determining regions onto homologous human framework regions. However, this process can substantially lower antibody stability and antigen-binding affinity, and requires iterative mutational fine-tuning to recover the original antibody properties. Here we report a computational method for the systematic grafting of animal complementarity-determining regions onto thousands of human frameworks.

View Article and Find Full Text PDF

Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host-microorganism interactions.

View Article and Find Full Text PDF

FOXN1 is a transcription factor critical for the development of both thymic epithelial cell (TEC) and hair follicle cell (HFC) compartments. However, mechanisms controlling its expression remain poorly understood. To address this question, we performed thorough analyses of the evolutionary conservation and chromatin status of the locus in different tissues and states and identified several putative cis-regulatory regions unique to TECs versus HFCs.

View Article and Find Full Text PDF

Patients with loss of function in the gene encoding the master regulator of central tolerance AIRE suffer from a devastating disorder called autoimmune polyendocrine syndrome type 1 (APS-1), characterized by a spectrum of autoimmune diseases and severe mucocutaneous candidiasis. Although the key mechanisms underlying the development of autoimmunity in patients with APS-1 are well established, the underlying cause of the increased susceptibility to Candida albicans infection remains less understood. Here, we show that AireMHCII type 3 innate lymphoid cells (ILC3s) could sense, internalize and present C.

View Article and Find Full Text PDF

The autoimmune regulator (AIRE) induces the transcription of thousands of peripheral tissue genes (PTGs) in thymic epithelial cells (TECs) to mediate immunological tolerance. The chromatin state required for optimal AIRE function in TECs and how this state is induced remains unclear. We tested the role of the histone acetyltransferase, KAT7 (also known as HBO1 or MYST2), which is essential for acetylation of histone 3 lysine 14, in TEC differentiation, AIRE-mediated PTG expression, and thymic tolerance.

View Article and Find Full Text PDF

The autoimmune regulator (AIRE) is essential for the establishment of central tolerance and prevention of autoimmunity. Interestingly, different AIRE mutations cause autoimmunity in either recessive or dominant-negative manners. Using engineered mouse models, we establish that some monoallelic mutants, including C311Y and C446G, cause breakdown of central tolerance.

View Article and Find Full Text PDF

Foxp3+ regulatory T cells (Tregs) are potent suppressor cells, essential for the maintenance of immune homeostasis. Most Tregs develop in the thymus and are then released into the immune periphery. However, some Tregs populate the thymus and constitute a major subset of yet poorly understood cells.

View Article and Find Full Text PDF

Regulatory T cells are important regulators of the immune system and have versatile functions for the homeostasis and repair of tissues. They express the forkhead box transcription factor Foxp3 as a lineage-defining protein. Negative regulators of Foxp3 expression are not well understood.

View Article and Find Full Text PDF

The generation of a functional T cell repertoire in the thymus is mainly orchestrated by thymic epithelial cells (TECs), which provide developing T cells with cues for their navigation, proliferation, differentiation and survival. The TEC compartment has been segregated historically into two major populations of medullary TECs and cortical TECs, which differ in their anatomical localization, molecular characteristics and functional roles. However, recent studies have shown that TECs are highly heterogeneous and comprise multiple subpopulations with distinct molecular and functional characteristics, including tuft cell-like or corneocyte-like phenotypes.

View Article and Find Full Text PDF

The transcriptional regulator Rbpj is involved in T-helper (T) subset polarization, but its function in T cells remains unclear. Here we show that T-specific Rbpj deletion leads to splenomegaly and lymphadenopathy despite increased numbers of T cells with a polyclonal TCR repertoire. A specific defect of Rbpj-deficient T cells in controlling T2 polarization and B cell responses is observed, leading to the spontaneous formation of germinal centers and a T2-associated immunoglobulin class switch.

View Article and Find Full Text PDF

Tuft cells are epithelial chemosensory cells with unique morphological and molecular characteristics, the most noticeable of which is a tuft of long and thick microvilli on their apical side, as well as expression of a very distinct set of genes, including genes encoding various members of the taste transduction machinery and pro-inflammatory cyclooxygenases. Initially discovered in rat trachea, tuft cells were gradually identified in various mucosal tissues, and later also in non-mucosal tissues, most recent of which is the thymus. Although tuft cells were discovered more than 60 years ago, their functions in the various tissues remained a mystery until recent years.

View Article and Find Full Text PDF

T cell development and selection are coordinated in the thymus by a specialized niche of diverse stromal populations. Although much progress has been made over the years in identifying the functions of the different cell types of the thymic stromal compartment, there is no comprehensive characterization of their diversity and heterogeneity. Here we combined massively parallel single-cell RNA-sequencing, spatial mapping, chromatin profiling and gene targeting to characterize de novo the entire stromal compartment of the mouse thymus.

View Article and Find Full Text PDF

In spite of recent advances in proteomics, quantitative analyses of protein-protein interactions (PPIs) or post-translational modifications (PTMs) in rare cell populations remain challenging. This is in particular true for analyses of rare immune and/or stem cell populations that are directly isolated from humans or animal models, and which are often characterized by multiple surface markers. To overcome these limitations, here we have developed proximity ligation imaging cytometry (PLIC), a protocol for proteomic analysis of rare cells.

View Article and Find Full Text PDF

Evidence suggests that a stem-cell-driven differentiation hierarchy maintains the dynamic thymic epithelial cell (TEC) network that governs T lymphocyte development. The identification of TEC stem/progenitor cells has been a major focus in the field, and several candidates with contrasting phenotypes have been described. We sought to determine the provenance and function of the only population reported to exhibit TEC stem cell properties in the adult, a Foxn1 EpCAM cell that generates so-called thymospheres.

View Article and Find Full Text PDF

Intrathymic T cell development is a complex process that depends upon continuous guidance from thymus stromal cell microenvironments. The thymic epithelium within the thymic stroma comprises highly specialized cells with a high degree of anatomic, phenotypic, and functional heterogeneity. These properties are collectively required to bias thymocyte development toward production of self-tolerant and functionally competent T cells.

View Article and Find Full Text PDF

Aire is a transcriptional regulator that induces promiscuous expression of thousands of genes encoding tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs that regulate its own expression have remained elusive. Here we comprehensively analyzed both cis-acting and trans-acting regulatory mechanisms and found that the Aire locus was insulated by the global chromatin organizer CTCF and was hypermethylated in cells and tissues that did not express Aire.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjhqkmdoqirrn9acn8st5bghaloqv6854): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once