Publications by authors named "Jakob Walve"

Even large inflows of oxygen-rich seawater to the Baltic Proper have in recent decades given only short-lived relief from oxygen deficiency below the halocline. We analyse long-term changes in oxygen deficiency, and calculate the "total oxygen debt" [Formula: see text]OD, the oxygen required to oxidize the hydrogen sulphide (HS) and ammonium (NH) that builds up during stagnation periods. Since the early 1990s, oxygen below 65m has gradually decreased during successive stagnation periods, and the [Formula: see text]OD has increased, with NH more important than previously recognised.

View Article and Find Full Text PDF

This study tested two sediment amendments with active sorbents: injection of aluminum (Al) into sediments and thin-layer capping with Polonite (calcium-silicate), with and without the addition of activated carbon (AC), for their simultaneous sequestration of sediment phosphorus (P), hydrophobic organic contaminants (HOCs), and metals. Sediment cores were collected from a eutrophic and polluted brackish water bay in Sweden and incubated in the laboratory to measure sediment-to-water contaminant release and effects on biogeochemical processes. We used diffusive gradients in thin-film passive samplers for metals and semi-permeable membrane devices for the HOC polychlorinated biphenyls and polycyclic aromatic hydrocarbons.

View Article and Find Full Text PDF

Aphanizomenon is a widespread genus of nitrogen (N2)-fixing cyanobacteria in lakes and estuaries, accounting for a large fraction of the summer N2-fixation in the Baltic Sea. However, information about its cell-specific carbon (C)- and N2-fixation rates in the early growth season has not previously been reported. We combined various methods to study N2-fixation, photosynthesis and respiration in field-sampled Baltic Sea Aphanizomenon sp.

View Article and Find Full Text PDF

We investigated the role of N2-fixation by the colony-forming cyanobacterium, Aphanizomenon spp., for the plankton community and N-budget of the N-limited Baltic Sea during summer by using stable isotope tracers combined with novel secondary ion mass spectrometry, conventional mass spectrometry and nutrient analysis. When incubated with (15)N2, Aphanizomenon spp.

View Article and Find Full Text PDF

Hypoxia is a well-described phenomenon in the offshore waters of the Baltic Sea with both the spatial extent and intensity of hypoxia known to have increased due to anthropogenic eutrophication, however, an unknown amount of hypoxia is present in the coastal zone. Here we report on the widespread unprecedented occurrence of hypoxia across the coastal zone of the Baltic Sea. We have identified 115 sites that have experienced hypoxia during the period 1955-2009 increasing the global total to ca.

View Article and Find Full Text PDF