Publications by authors named "Jakob Ruess"

Stochastic chemical kinetics is a widely used formalism for studying stochasticity of chemical reactions inside single cells. Experimental studies of reaction networks are generally performed with cells that are part of a growing population, yet the population context is rarely taken into account when models are developed. Models that neglect the population context lose their validity whenever the studied system influences traits of cells that can be selected in the population, a property that naturally arises in the complex interplay between single-cell and population dynamics of cell fate decision systems.

View Article and Find Full Text PDF

This study describes a method for controlling the production of protein in individual cells using stochastic models of gene expression. By combining modern microscopy platforms with optogenetic gene expression, experimentalists are able to accurately apply light to individual cells, which can induce protein production. Here we use a finite state projection based stochastic model of gene expression, along with Bayesian state estimation to control protein copy numbers within individual cells.

View Article and Find Full Text PDF

Cell-to-cell variability, born of stochastic chemical kinetics, persists even in large isogenic populations. In the study of single-cell dynamics this is typically accounted for. However, on the population level this source of heterogeneity is often sidelined to avoid the inevitable complexity it introduces.

View Article and Find Full Text PDF

Stochastic chemical kinetics at the single-cell level give rise to heterogeneous populations of cells even when all individuals are genetically identical. This heterogeneity can lead to nonuniform behaviour within populations, including different growth characteristics, cell-fate dynamics, and response to stimuli. Ultimately, these diverse behaviours lead to intricate population dynamics that are inherently multiscale: the population composition evolves based on population-level processes that interact with stochastically distributed single-cell states.

View Article and Find Full Text PDF

Microscopy image analysis has recently made enormous progress both in terms of accuracy and speed thanks to machine learning methods and improved computational resources. This greatly facilitates the online adaptation of microscopy experimental plans using real-time information of the observed systems and their environments. Applications in which reactiveness is needed are multifarious.

View Article and Find Full Text PDF

Understanding and characterising biochemical processes inside single cells requires experimental platforms that allow one to perturb and observe the dynamics of such processes as well as computational methods to build and parameterise models from the collected data. Recent progress with experimental platforms and optogenetics has made it possible to expose each cell in an experiment to an individualised input and automatically record cellular responses over days with fine time resolution. However, methods to infer parameters of stochastic kinetic models from single-cell longitudinal data have generally been developed under the assumption that experimental data is sparse and that responses of cells to at most a few different input perturbations can be observed.

View Article and Find Full Text PDF

SignificanceAt the single-cell level, biochemical processes are inherently stochastic. For many natural systems, the resulting cell-to-cell variability is exploited by microbial populations. In synthetic biology, however, the interplay of cell-to-cell variability and population processes such as selection or growth often leads to circuits not functioning as predicted by simple models.

View Article and Find Full Text PDF

Artificial microbial consortia seek to leverage division-of-labour to optimize function and possess immense potential for bioproduction. Co-culturing approaches, the preferred mode of generating a consortium, remain limited in their ability to give rise to stable consortia having finely tuned compositions. Here, we present an artificial differentiation system in budding yeast capable of generating stable microbial consortia with custom functionalities from a single strain at user-defined composition in space and in time based on optogenetically-driven genetic rewiring.

View Article and Find Full Text PDF

The chemical master equation and its continuum approximations are indispensable tools in the modeling of chemical reaction networks. These are routinely used to capture complex nonlinear phenomena such as multimodality as well as transient events such as first-passage times, that accurately characterise a plethora of biological and chemical processes. However, some mechanisms, such as heterogeneous cellular growth or phenotypic selection at the population level, cannot be represented by the master equation and thus have been tackled separately.

View Article and Find Full Text PDF

Contact tracing via smartphone applications is expected to be of major importance for maintaining control of the COVID-19 pandemic. However, viable deployment demands a minimal quarantine burden on the general public. That is, consideration must be given to unnecessary quarantining imposed by a contact tracing policy.

View Article and Find Full Text PDF

Across diverse biological systems-ranging from neural networks to intracellular signaling and genetic regulatory networks-the information about changes in the environment is frequently encoded in the full temporal dynamics of the network nodes. A pressing data-analysis challenge has thus been to efficiently estimate the amount of information that these dynamics convey from experimental data. Here we develop and evaluate decoding-based estimation methods to lower bound the mutual information about a finite set of inputs, encoded in single-cell high-dimensional time series data.

View Article and Find Full Text PDF

Mathematical models have been used successfully at diverse scales of biological organization, ranging from ecology and population dynamics to stochastic reaction events occurring between individual molecules in single cells. Generally, many biological processes unfold across multiple scales, with mutations being the best studied example of how stochasticity at the molecular scale can influence outcomes at the population scale. In many other contexts, however, an analogous link between micro- and macro-scale remains elusive, primarily due to the challenges involved in setting up and analyzing multi-scale models.

View Article and Find Full Text PDF

Bacteria in groups vary individually, and interact with other bacteria and the environment to produce population-level patterns of gene expression. Investigating such behavior in detail requires measuring and controlling populations at the single-cell level alongside precisely specified interactions and environmental characteristics. Here we present an automated, programmable platform that combines image-based gene expression and growth measurements with on-line optogenetic expression control for hundreds of individual Escherichia coli cells over days, in a dynamically adjustable environment.

View Article and Find Full Text PDF

Determining the sensitivity of certain system states or outputs to variations in parameters facilitates our understanding of the inner working of that system and is an essential design tool for the de novo construction of robust systems. In cell biology, the output of interest is often the response of a certain reaction network to some input (e.g.

View Article and Find Full Text PDF

Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze.

View Article and Find Full Text PDF

Many stochastic models of biochemical reaction networks contain some chemical species for which the number of molecules that are present in the system can only be finite (for instance due to conservation laws), but also other species that can be present in arbitrarily large amounts. The prime example of such networks are models of gene expression, which typically contain a small and finite number of possible states for the promoter but an infinite number of possible states for the amount of mRNA and protein. One of the main approaches to analyze such models is through the use of equations for the time evolution of moments of the chemical species.

View Article and Find Full Text PDF

Systems biology rests on the idea that biological complexity can be better unraveled through the interplay of modeling and experimentation. However, the success of this approach depends critically on the informativeness of the chosen experiments, which is usually unknown a priori. Here, we propose a systematic scheme based on iterations of optimal experiment design, flow cytometry experiments, and Bayesian parameter inference to guide the discovery process in the case of stochastic biochemical reaction networks.

View Article and Find Full Text PDF

Exploiting the information provided by the molecular noise of a biological process has proved to be valuable in extracting knowledge about the underlying kinetic parameters and sources of variability from single-cell measurements. However, quantifying this additional information a priori, to decide whether a single-cell experiment might be beneficial, is currently only possible in systems where either the chemical master equation is computationally tractable or a Gaussian approximation is appropriate. Here, we provide formulae for computing the information provided by measured means and variances from the first four moments and the parameter derivatives of the first two moments of the underlying process.

View Article and Find Full Text PDF

Recent computational studies indicate that the molecular noise of a cellular process may be a rich source of information about process dynamics and parameters. However, accessing this source requires stochastic models that are usually difficult to analyze. Therefore, parameter estimation for stochastic systems using distribution measurements, as provided for instance by flow cytometry, currently remains limited to very small and simple systems.

View Article and Find Full Text PDF