Current assays fail to address breast cancer's complex biology and accurately predict treatment response. On a retrospective cohort of 1082 female breast tissues, we develop and validate mFISHseq, which integrates multiplexed RNA fluorescent in situ hybridization with RNA-sequencing, guided by laser capture microdissection. This technique ensures tumor purity, unbiased whole transcriptome profiling, and explicitly quantifies intratumoral heterogeneity.
View Article and Find Full Text PDFIntroduction: The accurate distinction between benign and malignant biliary strictures (BS) poses a significant challenge. Despite the use of bile duct biopsies and brush cytology via endoscopic retrograde cholangiopancreaticography (ERCP), the results remain suboptimal. Single-operator cholangioscopy can enhance the diagnostic yield in BS, but its limited availability and high costs are substantial barriers.
View Article and Find Full Text PDFArtificial intelligence (AI) methods enable humans to analyse large amounts of data, which would otherwise not be feasibly quantifiable. This is especially true for unstructured visual and textual data, which can contain invaluable insights into disease. The hepatology research landscape is complex and has generated large amounts of data to be mined.
View Article and Find Full Text PDFMedical image classification requires labeled, task-specific datasets which are used to train deep learning networks de novo, or to fine-tune foundation models. However, this process is computationally and technically demanding. In language processing, in-context learning provides an alternative, where models learn from within prompts, bypassing the need for parameter updates.
View Article and Find Full Text PDFDeep learning can extract predictive and prognostic biomarkers from histopathology whole slide images, but its interpretability remains elusive. We develop and validate MoPaDi (Morphing histoPathology Diffusion), which generates counterfactual mechanistic explanations. MoPaDi uses diffusion autoencoders to manipulate pathology image patches and flip their biomarker status by changing the morphology.
View Article and Find Full Text PDFThe WHO guidelines for classifying central nervous system (CNS) tumours are changing considerably with each release. The classification of CNS tumours is uniquely complex among most other solid tumours as it incorporates not just morphology, but also genetic and epigenetic features. Keeping current with these changes across medical fields can be challenging, even for clinical specialists.
View Article and Find Full Text PDFPurpose: Rapidly expanding medical literature challenges oncologists seeking targeted cancer therapies. General-purpose large language models (LLMs) lack domain-specific knowledge, limiting their clinical utility. This study introduces the LLM system Medical Evidence Retrieval and Data Integration for Tailored Healthcare (MEREDITH), designed to support treatment recommendations in precision oncology.
View Article and Find Full Text PDFLarge language models (LLMs) are undergoing intensive research for various healthcare domains. This systematic review and meta-analysis assesses current applications, methodologies, and the performance of LLMs in clinical oncology. A mixed-methods approach was used to extract, summarize, and compare methodological approaches and outcomes.
View Article and Find Full Text PDFStructured reporting (SR) has long been a goal in radiology to standardize and improve the quality of radiology reports. Despite evidence that SR reduces errors, enhances comprehensiveness, and increases adherence to guidelines, its widespread adoption has been limited. Recently, large language models (LLMs) have emerged as a promising solution to automate and facilitate SR.
View Article and Find Full Text PDFThe advent of digital pathology and the deployment of high-throughput molecular techniques are generating an unprecedented mass of data. Thanks to advances in computational sciences, artificial intelligence (AI) approaches represent a promising avenue for extracting relevant information from complex data structures. From diagnostic assistance to powerful research tools, the potential fields of application of machine learning techniques in pathology are vast and constitute the subject of considerable research work.
View Article and Find Full Text PDFIntroduction: The research field of artificial intelligence (AI) in medicine and especially in gastroenterology is rapidly progressing with the first AI tools entering routine clinical practice, for example, in colorectal cancer screening. Contrast-enhanced ultrasound (CEUS) is a highly reliable, low-risk, and low-cost diagnostic modality for the examination of the liver. However, doctors need many years of training and experience to master this technique and, despite all efforts to standardize CEUS, it is often believed to contain significant interrater variability.
View Article and Find Full Text PDFMost clinical information is encoded as free text, not accessible for quantitative analysis. This study presents an open-source pipeline using the local large language model (LLM) "Llama 2" to extract quantitative information from clinical text and evaluates its performance in identifying features of decompensated liver cirrhosis. The LLM identified five key clinical features in a zero- and one-shot manner from 500 patient medical histories in the MIMIC IV dataset.
View Article and Find Full Text PDFHematoxylin- and eosin-stained whole-slide images (WSIs) are the foundation of diagnosis of cancer. In recent years, development of deep learning-based methods in computational pathology has enabled the prediction of biomarkers directly from WSIs. However, accurately linking tissue phenotype to biomarkers at scale remains a crucial challenge for democratizing complex biomarkers in precision oncology.
View Article and Find Full Text PDFIn clinical science and practice, text data, such as clinical letters or procedure reports, is stored in an unstructured way. This type of data is not a quantifiable resource for any kind of quantitative investigations and any manual review or structured information retrieval is time-consuming and costly. The capabilities of Large Language Models (LLMs) mark a paradigm shift in natural language processing and offer new possibilities for structured Information Extraction (IE) from medical free text.
View Article and Find Full Text PDFReliably detecting potentially misleading patterns in automated diagnostic assistance systems, such as those powered by artificial intelligence (AI), is crucial for instilling user trust and ensuring reliability. Current techniques fall short in visualizing such confounding factors. We propose DiffChest, a self-conditioned diffusion model trained on 515,704 chest radiographs from 194,956 patients across the US and Europe.
View Article and Find Full Text PDFBackground: Deployment and access to state-of-the-art precision medicine technologies remains a fundamental challenge in providing equitable global cancer care in low-resource settings. The expansion of digital pathology in recent years and its potential interface with diagnostic artificial intelligence algorithms provides an opportunity to democratize access to personalized medicine. Current digital pathology workstations, however, cost thousands to hundreds of thousands of dollars.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.