Masking the bitter taste of foods is one of the key strategies to improve their taste and palatability, particularly in the context of clean labeling, where natural compounds are preferred. Despite the demand, the availability of natural bitter-masking compounds remains limited. Here, we identified the bitter-masking compound 4'-demethyl-3,9-dihydroeucomin () isolated from the resin of by means of an activity-guided in vivo (sensory bitterness rating of quinine) and in vitro (cell-based bitter response assays) approach.
View Article and Find Full Text PDFIntroduction: Untargeted metabolomics is a powerful tool that provides strategies for gaining a systematic understanding of quantitative changes in the levels of metabolites, especially when combining different metabolomic platforms. Vanilla is one of the world's most popular flavors originating from cured pods of the orchid Vanilla planifolia. However, only a few studies have investigated the metabolome of V.
View Article and Find Full Text PDFDue to the increasing demand for natural food ingredients, including taste-active compounds, enzyme-catalyzed conversions of natural substrates, such as flavonoids, are promising tools to align with the principles of Green Chemistry. In this study, a novel -methyltransferase activity was identified in the mycelium of , which was successfully applied to generate the taste-active flavonoids hesperetin, hesperetin dihydrochalcone, homoeriodictyol, and homoeriodictyol dihydrochalcone. Furthermore, the mycelium-mediated OMT activity allowed for the conversion of various catecholic substrates, yielding their respective (iso-)vanilloids, while monohydroxylated compounds were not converted.
View Article and Find Full Text PDFHuman gingival fibroblast cells (HGF-1 cells) present an important cell model to investigate the gingiva's response to inflammatory stimuli such as lipopolysaccharides from (LPS). Recently, we demonstrated -resveratrol to repress the -LPS evoked release of the pro-inflammatory cytokine interleukin-6 (IL-6) via involvement of bitter taste sensing receptor TAS2R50 in HGF-1 cells. Since HGF-1 cells express most of the known 25 TAS2Rs, we hypothesized an association between a compound's bitter taste threshold and its repressing effect on the -LPS evoked IL-6 release by HGF-1 cells.
View Article and Find Full Text PDFCurrently, there is limited insight into the influence of the different binding sites of agonists and antagonists of the sweet taste receptor TAS1R2/TAS1R3 on temporal sensory properties of sweet tasting compounds. We investigated whether the binding site and a competitive or allosteric inhibition of TAS1R2/TAS1R3 influence the time-dependent sensory perception and in vitro TAS1R2/TAS1R3-activation profiles. We compared time-intensity ratings of cyclamate, NHDC, acesulfame K, and aspartame with and without lactisole with the corresponding TAS1R2/TAS1R3-activation in transfected HEK293 cells.
View Article and Find Full Text PDFJ Agric Food Chem
September 2022
A wide range of secondary metabolites has been described for various species, including the sweet-tasting phenyldihydroisocoumarin phyllodulcin, which is found in the leaves of ssp. . This work aims at the development and validation of an analytical workflow for comprehensive semi-polar metabolite profiling using liquid chromatography coupled with electrospray ionization ion mobility quadrupole time-of-flight mass spectrometry (UPLC-ESI-IMS-QToF-MS) to complement existing analytical studies.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2022
Aldehydes represent a versatile and favored class of flavoring substances. A biocatalytic access to odor-active aldehydes was developed by conversion of fatty acids with two enzymes of the α-dioxygenase pathway. The recombinant enzymes α-dioxygenase (α-DOX) originating from Crocosphaera subtropica and fatty aldehyde dehydrogenase (FALDH) from Vibrio harveyi were heterologously expressed in E.
View Article and Find Full Text PDFEmerging evidence points to a major role of salivary flow and viscoelastic properties in taste perception and mouthfeel. It has been proposed that sweet-tasting compounds influence salivary characteristics. However, whether perceived differences in the sensory properties of structurally diverse sweet-tasting compounds contribute to salivary flow and saliva viscoelasticity as part of mouthfeel and overall sweet taste perception remains to be clarified.
View Article and Find Full Text PDFThe palatability of a pharmaceutical preparation is a significant obstacle in developing a patient-friendly dosage form. Bitter taste is an important factor for patients in (i) selecting a certain drug from generic products available in the market and (ii) adhering to a therapeutic regimen. The various methods developed for identification of bitter tasting and bitter-taste modulating compounds present a number of limitations, ranging from limited sensitivity to lack of close correlations with sensory data.
View Article and Find Full Text PDFRed wine is rich in phenolic compounds, which chiefly determine its characteristic taste. One of its major phenolic acid constituents for which an astringency, yet no clear contribution to bitter taste has been reported, is gallic acid (GA). In previous studies, we have demonstrated bitter-tasting constituents to regulate cellular proton secretion (PS) as a key mechanism of gastric acid secretion via activation of bitter taste sensing receptors (TAS2Rs).
View Article and Find Full Text PDFChalcone isomerase (CHI) is a key enzyme in the biosynthesis of flavonoids in plants. The first bacterial CHI (CHI ) was identified from Eubacterium ramulus, but its distribution, evolutionary source, substrate scope, and stereoselectivity are still unclear. Here, we describe the identification of 66 novel bacterial CHIs from Genbank using a novel Sequence-Structure-Function-Evolution (SSFE) strategy.
View Article and Find Full Text PDFRecent data have shown anti-inflammatory effects for -resveratrol (RSV) and rosmarinic acid (RA) in various immune-competent cell models through reduction of lipopolysaccharide (LPS)-induced interleukin 6 (IL-6) release. Because both compounds have been reported to taste bitter, we hypothesized an involvement of human bitter taste sensing receptors (TAS2Rs) on IL-6 release in LPS-treated human gingival fibroblasts (HGF-1). First, the bitter taste intensity of RSV and RA was compared in a sensory trial with 10 untrained panelists, of whom 90% rated a 50 ppm of RSV in water solution more bitter than 50 ppm of RA.
View Article and Find Full Text PDFThe cinnamon-derived bioactive aroma compound cinnamaldehyde (CAL) has been identified as a promising antiobesity agent, inhibiting adipogenesis and decreasing lipid accumulation in vitro as well as in animal models. Here, we investigated the antiadipogenic effect of cinnamyl isobutyrate (CIB), another cinnamon-derived aroma compound, in comparison to CAL in 3T3-L1 adipocyte cells. In a concentration of 30 μM, CIB reduced triglyceride (TG) and phospholipid (PL) accumulation in 3T3-L1 pre-adipocytes by 21.
View Article and Find Full Text PDFLipid extracts of the fungus were found to contain various scarce fatty acids including dodec-11-enoic acid and di- and tri-unsaturated C isomers. A biotechnological approach using a heterologously expressed carboxylic acid reductase was developed to transform the fatty acids into the respective aldehydes, yielding dodec-11-enal. Supplementation studies gave insights into the fungal biosynthesis of this rarely occurring acid and suggested a terminal desaturation of lauric acid being responsible for its formation.
View Article and Find Full Text PDFScope: This study investigates the effect of the sweetness of a sucrose versus an isocaloric glucose solution in dietary concentrations on blood glucose regulation by adjusting the sweetness level using the sweet taste inhibitor lactisole.
Methods And Results: A total of 27 healthy males participated in this randomized, crossover study with four treatments: 10% glucose, 10% sucrose, 10% sucrose + 60 ppm lactisole, and 10% glucose + 60 ppm lactisole. Plasma glucose, insulin, glucagon-like peptide 1, and glucagon levels are measured at baseline and 15, 30, 60, 90, and 120 min after beverage consumption.
Knowledge regarding the involvement of sweetness perception on energy intake is scarce. Here, the impact of glucose and sucrose sweetness, beyond their caloric load, on subsequent food intake and biomarkers of satiation was evaluated by co-administration of the sweet taste receptor inhibitor lactisole. A total of 27 healthy, male subjects received solutions of either 10% glucose / 60 ppm lactisole or 10% sucrose / 60 ppm lactisole.
View Article and Find Full Text PDFA reduction in sugar consumption is desirable from a health point of view. However, the sensory profiles of alternative sweet tasting compounds differ from sucrose regarding their temporal profile and undesired side tastes, reducing consumers' acceptance. The present study describes a sensory characterization of a variety of sweet and sweet taste affecting compounds followed by a comparison of similarity to sucrose and a multivariate regression analysis to investigate structural determinants and possible interactions for the temporal profile of the sweetness and side-tastes.
View Article and Find Full Text PDFAs a result of their pleasant odor qualities and low odor thresholds, iso- and anteiso-fatty aldehydes represent promising candidates for applications in flavoring preparations. A novel cyanobacterial α-dioxygenase from was heterologously expressed in and applied for the biotechnological production of C-C branched-chain fatty aldehydes. The enzyme has a sequence identity of less than 40% to well-investigated α-dioxygenase from rice.
View Article and Find Full Text PDFActivation of the transient receptor potential (TRP) channel TRPA1 by cinnamaldehyde has been shown to stimulate serotonin release in enterochromaffin QGP-1 cells. However, the impact of cinnamaldehyde on serotonin release in enterocytes is less well understood. In addition, since the neurotransmitter serotonin plays a regulatory role in a large variety of gastrointestinal and metabolic functions, it is of interest to study which structural characteristics determine cinnamaldehyde-induced serotonin release by enterocytes.
View Article and Find Full Text PDFThis study aimed at identifying whether the bitter-tasting amino acids l-arginine (l-ARG) and l-isoleucine (l-ILE) differentially regulate mechanisms of gastric acid secretion in human parietal cells (HGT-1 cells) via activation of bitter taste sensing receptors (T2Rs). In a first set of experiments, involvement of T2Rs in l-ARG and l-ILE-modulated proton secretion was demonstrated by co-treatment of HGT-1 cells with T2R antagonists. Subsequent whole genome screenings by means of cDNA arrays revealed T2R1 as a prominent target for both amino acids.
View Article and Find Full Text PDFScope: Increasing the intake of satiety-enhancing food compounds represents a promising strategy for maintaining a healthy body weight. Recently, satiating effects for the capsaicinoid nonivamide have been demonstrated. As various proteins and amino acids have also been demonstrated to decrease energy intake, oral glucose tolerance test (oGTT)-based bolus interventions of 75 g glucose + 0.
View Article and Find Full Text PDF