GABAB receptors mediate slow synaptic inhibition in the nervous system. In transfected cells, functional GABAB receptors are usually only observed after coexpression of GABAB(1) and GABAB(2) subunits, which established the concept of heteromerization for G-protein-coupled receptors. In the heteromeric receptor, GABAB(1) is responsible for binding of GABA, whereas GABAB(2) is necessary for surface trafficking and G-protein coupling.
View Article and Find Full Text PDFThe scope of the plenary lecture at the occasion of the Xth Meeting on Heterocyclic Structures in Medicinal Chemistry, Palermo 2002, is considerably larger than that of the main lecture at the XVIth International Symposium on Medicinal Chemistry, Bologna 2000, described by Froestl et al. in Farmaco 56 (2001) 101. Additional information is presented, in particular, on the reaction conditions for the 31 step synthesis of the combined affinity chromatography and photoaffinity radioligand [125I]CGP84963 and on the recent developments of the molecular biology of GABA(B) receptors.
View Article and Find Full Text PDF