Publications by authors named "Jakob Halekotte"

Casein kinase 1 (CK1) plays central roles in various signal transduction pathways and performs many cellular activities. For many years CK1 was thought to act independently of modulatory subunits and in a constitutive manner. Recently, DEAD box RNA helicases, in particular DEAD box RNA helicase 3 X-linked (DDX3X), were found to stimulate CK1 activity In order to observe CK1 activity in living cells and to study its interaction with DDX3X, we developed a CK1-specific FRET biosensor.

View Article and Find Full Text PDF

The involvement of protein kinase CK1δ in the pathogenesis of severe disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, familial advanced sleep phase syndrome, and cancer has dramatically increased interest in the development of effective small molecule inhibitors for both therapeutic application and basic research. Unfortunately, the design of CK1 isoform-specific compounds has proved to be highly complicated due to the existence of six evolutionarily conserved human CK1 members that possess similar, different, or even opposite physiological and pathophysiological implications. Consequently, only few potent and selective CK1δ inhibitors have been reported so far and structurally divergent approaches are urgently needed in order to establish SAR that might enable complete discrimination of CK1 isoforms and related p38α MAPK.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the fourth leading cause of cancer related death worldwide due to high apoptotic resistance and metastatic potential. Because mutations as well as deregulation of CK1 isoforms contribute to tumor development and tumor progression, CK1 has become an interesting drug target. In this study we show that CK1 isoforms are differently expressed in colon tumor cell lines and that growth of these cell lines can be inhibited by CK1-specific inhibitors.

View Article and Find Full Text PDF

Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules.

View Article and Find Full Text PDF