Publications by authors named "Jakob H Macke"

Neonatal apneas and hypopneas present a serious risk for healthy infant development. Treating these adverse events requires frequent manual stimulation by skilled personnel, which can lead to alarm fatigue. This study aims to develop and validate an interpretable model that can predict apneas and hypopneas.

View Article and Find Full Text PDF

Denoising diffusion probabilistic models (DDPMs) have recently been shown to accurately generate complicated data such as images, audio, or time series. Experimental and clinical neuroscience also stand to benefit from this progress, as the accurate generation of neurophysiological time series can enable or improve many neuroscientific applications. Here, we present a flexible DDPM-based method for modeling multichannel, densely sampled neurophysiological recordings.

View Article and Find Full Text PDF

Computational models, particularly finite-element (FE) models, are essential for interpreting experimental data and predicting system behavior, especially when direct measurements are limited. A major challenge in tuning these models is the large number of parameters involved. Traditional methods, such as one-by-one sensitivity analyses, are time-consuming, subjective, and often return only a single set of parameter values, focusing on reproducing averaged data rather than capturing the full variability of experimental measurements.

View Article and Find Full Text PDF

We can now measure the connectivity of every neuron in a neural circuit, but we cannot measure other biological details, including the dynamical characteristics of each neuron. The degree to which measurements of connectivity alone can inform the understanding of neural computation is an open question. Here we show that with experimental measurements of only the connectivity of a biological neural network, we can predict the neural activity underlying a specified neural computation.

View Article and Find Full Text PDF

Neural oscillations are ubiquitously observed in many brain areas. One proposed functional role of these oscillations is that they serve as an internal clock, or 'frame of reference'. Information can be encoded by the timing of neural activity relative to the phase of such oscillations.

View Article and Find Full Text PDF

Recent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neuronal networks using a hypothesized wiring rule in a generative model and to compare the resulting synthetic data with empirical data. However, most wiring rules have at least some free parameters, and identifying parameters that reproduce empirical data can be challenging as it often requires manual parameter tuning.

View Article and Find Full Text PDF

We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence.

View Article and Find Full Text PDF

Neural circuits can produce similar activity patterns from vastly different combinations of channel and synaptic conductances. These conductances are tuned for specific activity patterns but might also reflect additional constraints, such as metabolic cost or robustness to perturbations. How do such constraints influence the range of permissible conductances? Here we investigate how metabolic cost affects the parameters of neural circuits with similar activity in a model of the pyloric network of the crab .

View Article and Find Full Text PDF

Forming a complete picture of the relationship between neural activity and skeletal kinematics requires quantification of skeletal joint biomechanics during free behavior; however, without detailed knowledge of the underlying skeletal motion, inferring limb kinematics using surface-tracking approaches is difficult, especially for animals where the relationship between the surface and underlying skeleton changes during motion. Here we developed a videography-based method enabling detailed three-dimensional kinematic quantification of an anatomically defined skeleton in untethered freely behaving rats and mice. This skeleton-based model was constrained using anatomical principles and joint motion limits and provided skeletal pose estimates for a range of body sizes, even when limbs were occluded.

View Article and Find Full Text PDF

Inferring parameters of computational models that capture experimental data are a central task in cognitive neuroscience. Bayesian statistical inference methods usually require the ability to evaluate the likelihood of the model-however, for many models of interest in cognitive neuroscience, the associated likelihoods cannot be computed efficiently. Simulation-based inference (SBI) offers a solution to this problem by only requiring access to simulations produced by the model.

View Article and Find Full Text PDF

Background: Stroke is one of the most frequent diseases, and half of the stroke survivors are left with permanent impairment. Prediction of individual outcome is still difficult. Many but not all patients with stroke improve by approximately 1.

View Article and Find Full Text PDF

The neurons in the cerebral cortex are not randomly interconnected. This specificity in wiring can result from synapse formation mechanisms that connect neurons, depending on their electrical activity and genetically defined identity. Here, we report that the morphological properties of the neurons provide an additional prominent source by which wiring specificity emerges in cortical networks.

View Article and Find Full Text PDF

We demonstrate unprecedented accuracy for rapid gravitational wave parameter estimation with deep learning. Using neural networks as surrogates for Bayesian posterior distributions, we analyze eight gravitational wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog and find very close quantitative agreement with standard inference codes, but with inference times reduced from O(day) to 20 s per event. Our networks are trained using simulated data, including an estimate of the detector noise characteristics near the event.

View Article and Find Full Text PDF

Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular structures with nanometer resolution, but standard analysis algorithms require sparse emitters, which limits imaging speed and labeling density. Here, we overcome this major limitation using deep learning. We developed DECODE (deep context dependent), a computational tool that can localize single emitters at high density in three dimensions with highest accuracy for a large range of imaging modalities and conditions.

View Article and Find Full Text PDF

Single-unit recordings in the brain of behaving human subjects provide a unique opportunity to advance our understanding of neural mechanisms of cognition. These recordings are exclusively performed in medical centers during diagnostic or therapeutic procedures. The presence of medical instruments along with other aspects of the hospital environment limit the control of electrical noise compared to animal laboratory environments.

View Article and Find Full Text PDF

. Most neuroprosthetic implants employ pulsatile square-wave electrical stimuli, which are significantly different from physiological inter-neuronal communication. In case of retinal neuroprosthetics, which use a certain type of pulsatile stimuli, reliable object and contrast discrimination by implanted blind patients remained challenging.

View Article and Find Full Text PDF

The hippocampal dentate gyrus is an important relay conveying sensory information from the entorhinal cortex to the hippocampus proper. During exploration, the dentate gyrus has been proposed to act as a pattern separator. However, the dentate gyrus also shows structured activity during immobility and sleep.

View Article and Find Full Text PDF

Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators-trained using model simulations-to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features.

View Article and Find Full Text PDF

Understanding how rich dynamics emerge in neural populations requires models exhibiting a wide range of behaviors while remaining interpretable in terms of connectivity and single-neuron dynamics. However, it has been challenging to fit such mechanistic spiking networks at the single-neuron scale to empirical population data. To close this gap, we propose to fit such data at a mesoscale, using a mechanistic but low-dimensional and, hence, statistically tractable model.

View Article and Find Full Text PDF

The ability to preferentially stimulate different retinal pathways is an important area of research for improving visual prosthetics. Recent work has shown that different classes of retinal ganglion cells (RGCs) have distinct linear electrical input filters for low-amplitude white noise stimulation. The aim of this study is to provide a statistical framework for characterizing how RGCs respond to white-noise electrical stimulation.

View Article and Find Full Text PDF

One challenge in neuroscience, as in other areas of science, is to make inferences about the underlying causal structure from correlational data. Here, we discuss this challenge in the context of choice correlations in sensory neurons, that is, trial-by-trial correlations, unexplained by the stimulus, between the activity of sensory neurons and an animal's perceptual choice. Do these choice-correlations reflect feedforward, feedback signalling, both, or neither? We highlight recent results of correlational and causal examinations of choice and choice-history signals in sensory, and in part sensorimotor, cortex and address formal statistical frameworks to infer causal interactions from data.

View Article and Find Full Text PDF

Deep neural networks (DNNs) transform stimuli across multiple processing stages to produce representations that can be used to solve complex tasks, such as object recognition in images. However, a full understanding of how they achieve this remains elusive. The complexity of biological neural networks substantially exceeds the complexity of DNNs, making it even more challenging to understand the representations they learn.

View Article and Find Full Text PDF

In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved.

View Article and Find Full Text PDF

Despite their growing popularity as models of visual functions, it remains unclear whether rodents are capable of deploying advanced shape-processing strategies when engaged in visual object recognition. In rats, for instance, pattern vision has been reported to range from mere detection of overall object luminance to view-invariant processing of discriminative shape features. Here we sought to clarify how refined object vision is in rodents, and how variable the complexity of their visual processing strategy is across individuals.

View Article and Find Full Text PDF