In contrast to the large body of work on bioactive natural products from individually cultivated bacteria, the chemistry of environmental microbial communities remains largely elusive. Here, we present a comprehensive bioinformatic and functional study on a complex and interaction-rich ecosystem, algal-bacterial (microbial) mats of Lake Chilika in India, Asia's largest brackish water body. We report the bacterial compositional dynamics over the mat life cycle, >1,300 reconstructed environmental genomes harboring >2,200 biosynthetic gene clusters (BGCs), the successful cultivation of a widespread core microbiome member belonging to the genus , heterologous reconstitution of two silent biosynthetic pathways, and new compounds with potent protease inhibitory and antiviral activities.
View Article and Find Full Text PDFTargeted protein degradation (TPD) relies on small molecules to recruit proteins to E3 ligases to induce their ubiquitylation and degradation by the proteasome. Only a few of the approximately 600 human E3 ligases are currently amenable to this strategy. This limits the actionable target space and clinical opportunities and thus establishes the necessity to expand to additional ligases.
View Article and Find Full Text PDFMacroautophagy is one of two major degradation systems in eukaryotic cells. Regulation and control of autophagy are often achieved through the presence of short peptide sequences called LC3 interacting regions (LIR) in autophagy-involved proteins. Using a combination of new protein-derived activity-based probes prepared from recombinant LC3 proteins, along with protein modeling and X-ray crystallography of the ATG3-LIR peptide complex, we identified a noncanonical LIR motif in the human E2 enzyme responsible for LC3 lipidation, ATG3.
View Article and Find Full Text PDFUbiquitin and related ubiquitin-like proteins (Ubls) influence a variety of cellular pathways including protein degradation and response to viral infections. The chemical interrogation of these complex enzymatic cascades relies on the use of tailored activity-based probes (ABPs). Herein, we report the preparation of ABPs for ubiquitin, NEDD8, SUMO2 and ISG15 by selective acyl hydrazide modification.
View Article and Find Full Text PDFAberrations in protein modification with ubiquitin-fold modifier (UFM1) are associated with a range of diseases, but the biological function and regulation of this post-translational modification, known as UFMylation, remain enigmatic. To provide activity-based probes for UFMylation, we have developed a new method for the installation of electrophilic warheads at the C-terminus of recombinant UFM1. A C-terminal UFM1 acyl hydrazide was readily produced by selective intein cleavage and chemoselectively acylated by a variety of carboxylic acid anhydrides at pH 3, without detriment to the folded protein or reactions at unprotected amino acid side chains.
View Article and Find Full Text PDFChemical protein synthesis enables the precise construction of proteins by employing solid-phase peptide synthesis and chemoselective ligations. One such chemoselective reaction suitable for protein synthesis is the α-Ketoacid-Hydroxylamine (KAHA) ligation. Fully unprotected peptides are ligated by a selective reaction between α-ketoacids and hydroxylamines to give native amide bonds.
View Article and Find Full Text PDFAlthough peptide chemistry has made great progress, the frequent occurrence of aspartimide formation during peptide synthesis remains a formidable challenge. Aspartimide formation leads to low yields in addition to costly purification or even inaccessible peptide sequences. Here, we report an alternative approach to address this longstanding challenge of peptide synthesis by utilizing cyanosulfurylides to mask carboxylic acids by a stable C-C bond.
View Article and Find Full Text PDF