Cryo-electron tomography (cryo-ET) has the potential to reveal cell structure down to atomic resolution. Nevertheless, cellular cryo-ET data is highly complex, requiring image segmentation for visualization and quantification of subcellular structures. Due to noise and anisotropic resolution in cryo-ET data, automatic segmentation based on classical computer vision approaches usually does not perform satisfactorily.
View Article and Find Full Text PDFThe most common cause of dementia among elderly people is Alzheimer's disease (AD). The typical symptom of AD is the decline of cognitive abilities, which is caused by loss of synaptic function. Amyloid-β (Aβ) oligomers play a significant role in the development of this synaptic dysfunction.
View Article and Find Full Text PDFHere, we present a protocol for quantifying pyramidal neuron hyperexcitability in a mouse model of STXBP1 neurodevelopmental encephalopathy (Stxbp1). We describe steps for preparing brain slices, positioning electrodes, and performing an excitability test to investigate microcircuit failures. This protocol is based on recording layer 2/3 cortical pyramidal neurons in response to stimulation of two independent sets of excitatory axons that recruit feedforward inhibition microcircuits.
View Article and Find Full Text PDFSNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons.
View Article and Find Full Text PDFWith the increasing popularity of cryo-electron tomography (cryo-ET) in recent years, the quest to establish a method for growing primary neurons directly on electron microscopy grids (EM grids) has been ongoing. Here we describe a straightforward way to establish a mature neuronal network on EM grids, which includes formation of synaptic contacts. These synapses were thin enough to allow for direct visualization of small filaments such as SNARE proteins tethering the synaptic vesicle (SV) to the active zone plasma membrane on a Titan Krios without prior focused ion-beam milling.
View Article and Find Full Text PDFMunc13 proteins are priming factors for SNARE-dependent exocytosis, which are activated by diacylglycerol (DAG)-binding to their C1-domain. Several Munc13 paralogs exist, but their differential roles are not well understood. We studied the interdependence of phorbolesters (DAG mimics) with Munc13-1 and ubMunc13-2 in mouse adrenal chromaffin cells.
View Article and Find Full Text PDFSynaptic communication relies on the fusion of synaptic vesicles with the plasma membrane, which leads to neurotransmitter release. This exocytosis is triggered by brief and local elevations of intracellular Ca with remarkably high sensitivity. How this is molecularly achieved is unknown.
View Article and Find Full Text PDFSynaptotagmins confer calcium-dependence to the exocytosis of secretory vesicles, but how coexpressed synaptotagmins interact remains unclear. We find that synaptotagmin-1 and synaptotagmin-7 when present alone act as standalone fast and slow Ca-sensors for vesicle fusion in mouse chromaffin cells. When present together, synaptotagmin-1 and synaptotagmin-7 are found in largely non-overlapping clusters on dense-core vesicles.
View Article and Find Full Text PDFFusion of vesicles with the plasma membrane and liberation of their contents is a multistep process involving several proteins. Correctly assigning the role of specific proteins and reactions in this cascade requires a measurement method with high temporal resolution. Patch-clamp recordings of cell membrane capacitance in combination with calcium measurements, calcium uncaging, and carbon-fiber amperometry allow for the accurate determination of vesicle pool sizes, their fusion kinetics, and their secreted oxidizable content.
View Article and Find Full Text PDFClassically, neurexins are thought to mediate synaptic connections through trans interactions with a number of different postsynaptic partners. Neurexins are cleaved by metalloproteases in an activity-dependent manner, releasing the soluble extracellular domain. Here, we report that in both immature (before synaptogenesis) and mature (after synaptogenesis) hippocampal neurons, the soluble neurexin-1β ectodomain triggers acute Ca-influx at the dendritic/postsynaptic side.
View Article and Find Full Text PDFNeuronal SNAREs and their key regulators together drive synaptic vesicle exocytosis and synaptic transmission as a single integrated membrane fusion machine. Human pathogenic mutations have now been reported for all eight core components, but patients are diagnosed with very different neurodevelopmental syndromes. We propose to unify these syndromes, based on etiology and mechanism, as "SNAREopathies.
View Article and Find Full Text PDFEndophilins-A are conserved endocytic adaptors with membrane curvature-sensing and -inducing properties. We show here that, independently of their role in endocytosis, endophilin-A1 and endophilin-A2 regulate exocytosis of neurosecretory vesicles. The number and distribution of neurosecretory vesicles were not changed in chromaffin cells lacking endophilin-A, yet fast capacitance and amperometry measurements revealed reduced exocytosis, smaller vesicle pools and altered fusion kinetics.
View Article and Find Full Text PDFChemical synaptic transmission relies on the Ca-induced fusion of transmitter-laden vesicles whose coupling distance to Ca channels determines synaptic release probability and short-term plasticity, the facilitation or depression of repetitive responses. Here, using electron- and super-resolution microscopy at the neuromuscular junction we quantitatively map vesicle:Ca channel coupling distances. These are very heterogeneous, resulting in a broad spectrum of vesicular release probabilities within synapses.
View Article and Find Full Text PDFSNAP-25, one of the three SNARE-proteins responsible for synaptic release, can be phosphorylated by Protein Kinase C on Ser-187, close to the fusion pore. In neuroendocrine cells, this phosphorylation event potentiates vesicle recruitment into releasable pools, whereas the consequences of phosphorylation for synaptic release remain unclear. We mutated Ser-187 and expressed two mutants (S187C and S187E) in the context of the SNAP-25B-isoform in SNAP-25 knockout glutamatergic autaptic neurons.
View Article and Find Full Text PDFMUNC18-1 (also known as STXBP1) is an essential protein for docking and fusion of secretory vesicles. Mouse chromaffin cells (MCCs) lacking MUNC18-1 show impaired secretory vesicle docking, but also mistargeting of SNARE protein syntaxin1 and an abnormally dense submembrane F-actin network. Here, we tested the contribution of both these phenomena to docking and secretion defects in MUNC18-1-deficient MCCs.
View Article and Find Full Text PDFInformation transfer across CNS synapses depends on the very low basal vesicle fusion rate and the ability to rapidly upregulate that rate upon Ca influx. We show that local electrostatic repulsion participates in creating an energy barrier, which limits spontaneous synaptic transmission. The barrier amplitude is increased by negative charges and decreased by positive charges on the SNARE-complex surface.
View Article and Find Full Text PDFSNARE-complexes drive the fusion of membrane-bound vesicles with target membranes or with each other (homotypic fusion). The SNARE-proteins are subdivided into Q, Q, Q and R-SNAREs depending on their position in the four-helical SNARE-bundle. Here, we review the SNAP-25 protein sub-family, which includes both the Q and Q SNARE-domains within a single protein.
View Article and Find Full Text PDFDoc2B is a cytosolic protein with binding sites for Munc13 and Tctex-1 (dynein light chain), and two C2-domains that bind to phospholipids, Ca and SNAREs. Whether Doc2B functions as a calcium sensor akin to synaptotagmins, or in other calcium-independent or calcium-dependent capacities is debated. We here show by mutation and overexpression that Doc2B plays distinct roles in two sequential priming steps in mouse adrenal chromaffin cells.
View Article and Find Full Text PDFPhosphatidylinositol-4,5-bisphosphate [PI(4,5)P] is essential for exocytosis. Classical ways of manipulating PI(4,5)P levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P levels.
View Article and Find Full Text PDFSynaptotagmin 1 is a presynaptic calcium sensor, regulating SNARE-mediated vesicle exocytosis of transmitter. Increasing evidence indicate roles of SNARE proteins in postsynaptic glutamate receptor trafficking. However, a possible postsynaptic expression of synaptotagmin 1 has not been demonstrated previously.
View Article and Find Full Text PDFThe functions of four of the five proteins in the mammalian uncoordinated-13 (Munc13) family have been identified as priming factors in SNARE-dependent exocytosis. In this issue, Zhang et al. (2017.
View Article and Find Full Text PDF