Nanomaterials (Basel)
October 2022
The focus of this paper is to investigate the effects of the addition of a connector between two serial microchannels. The idea of adding connector at the inlet of microchannels to enhance the random motion of molecules or nanoparticles in low Reynolds numbers was developed in our research group for the first time. It was experimentally determined that the shape of a connector between two microchannels has a significant impact on the enhancement of the random motion of molecules or nanoparticles.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2022
The focus of this paper was to develop a comprehensive nanofluid thermal conductivity model that can be applied to nanofluids with any number of distinct nanoparticles for a given base fluid, concentration, temperature, particle material, and particle diameter. For the first time, this model permits a direct analytical comparison between nanofluids with a different number of distinct nanoparticles. It was observed that the model's average error was ~5.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2022
The purpose of this paper is to investigate the effects of a connector between two microchannels, for the first time. A brief literature review is provided to offer a better understanding on the impacts of concentration and the characteristics of nanoparticles on thermal conductivity, viscosity, and, consequently, the heat transfer coefficient inside the microchannels. The given literature review aims to help engineer nanofluids to enhance the heat transfer coefficient inside the microchannels.
View Article and Find Full Text PDF