Publications by authors named "Jake T Jordan"

Aging is associated with cognitive deficits, with spatial memory being very susceptible to decline. The hippocampal dentate gyrus (DG) is important for processing spatial information in the brain and is particularly vulnerable to aging, yet its sparse activity has led to difficulties in assessing changes in this area. Using in vivo two-photon calcium imaging, we compared DG neuronal activity and representations of space in young and aged mice walking on an unfamiliar treadmill.

View Article and Find Full Text PDF

Aging is associated with cognitive deficits, with spatial memory being very susceptible to decline. The hippocampal dentate gyrus (DG) is important for processing spatial information in the brain and is particularly vulnerable to aging, yet its sparse activity has led to difficulties in assessing changes in this area. Using two-photon calcium imaging, we compared DG neuronal activity and representations of space in young and aged mice walking on an unfamiliar treadmill.

View Article and Find Full Text PDF

Plasticity is a neural phenomenon in which experience induces long-lasting changes to neuronal circuits and is at the center of most neurobiological theories of learning and memory. However, too much plasticity is maladaptive and must be balanced with substrate stability. Area CA3 of the hippocampus provides such a balance via hemispheric lateralization, with the left hemisphere dominant in providing plasticity and the right specialized for stability.

View Article and Find Full Text PDF

Several mouse neuronal recording techniques require head fixation. Head-fixed treadmill walking can be used to design tasks that enable the study of neural activity in the context of behavior. Here, we provide a detailed protocol for constructing a treadmill with tactile spatial cues, training mice on a rewarded behavioral task, and analyzing behavioral data.

View Article and Find Full Text PDF

Hemispheric lateralization is a fundamental organizing principle of nervous systems across taxonomic groups with bilateral symmetry. The mammalian hippocampus is lateralized anatomically, physiologically, and chemically; however, functional asymmetries are not yet well understood. Imaging studies in humans have implicated the left and right hippocampus in specialized processing.

View Article and Find Full Text PDF

The left and right rodent hippocampi exhibit striking lateralization in some of the very neural substrates considered to be critical for hippocampal cognitive function. Despite this, there is an overwhelming lack of consideration for hemispheric differences in studies of the rodent hippocampus. Asymmetries identified so far suggest that a bilateral model of the hippocampus will be essential for an understanding of this brain region, and perhaps of the brain more widely.

View Article and Find Full Text PDF

A daily challenge in clinical practice is to adequately explain disorders and treatments to patients of varying levels of literacy in a time-limited situation. Drawing jointly upon research on causal reasoning and multimodal theory, the authors asked whether adding visual causal models to clinical explanations promotes patient learning. Participants were 86 people currently or formerly diagnosed with a mood disorder and 104 lay people in Boston, Massachusetts, USA, who were randomly assigned to receive either a visual causal model (dual-mode) presentation or auditory-only presentation of an explanation about generalized anxiety disorder and its treatment.

View Article and Find Full Text PDF