Liquid crystals are able to transform a local molecular interaction into a macroscopic change of state, making them a valuable "smart" material. Here, we investigate a novel polymeric amphiphile as a candidate for molecular triggering of liquid crystal droplets in aqueous background. Using microscopy equipped with crossed polarizers and optical tweezers, we find that the monomeric amphiphile is able to trigger both a fast phase change and then a subsequent transition from nematic to isotropic.
View Article and Find Full Text PDFLiquid crystals (LCs) are easily influenced by external interactions, particularly at interfaces. When rod-like LC molecules are confined to spherical droplets, they experience a competition between interfacial tension and elastic deformations. The configuration of LCs inside a droplet can be controlled using surfactants that influence the interfacial orientation of the LC molecules in the oil-phase of an oil in water emulsion.
View Article and Find Full Text PDF