In this paper, we introduce a scalable machine learning approach accompanied by open-source software for identifying violent and peaceful forms of political protest participation using social media data. While violent political protests are statistically rare events, they often shape public perceptions of political and social movements. This is, in part, due to the extensive and disproportionate media coverage which violent protest participation receives relative to peaceful protest participation.
View Article and Find Full Text PDFHerbert Simon's classic rich-get-richer model is one of the simplest empirically supported mechanisms capable of generating heavy-tail size distributions for complex systems. Simon argued analytically that a population of flavored elements growing by either adding a novel element or randomly replicating an existing one would afford a distribution of group sizes with a power-law tail. Here, we show that, in fact, Simon's model does not produce a simple power-law size distribution as the initial element has a dominant first-mover advantage, and will be overrepresented by a factor proportional to the inverse of the innovation probability.
View Article and Find Full Text PDFWe propose and develop a Lexicocalorimeter: an online, interactive instrument for measuring the "caloric content" of social media and other large-scale texts. We do so by constructing extensive yet improvable tables of food and activity related phrases, and respectively assigning them with sourced estimates of caloric intake and expenditure. We show that for Twitter, our naive measures of "caloric input", "caloric output", and the ratio of these measures are all strong correlates with health and well-being measures for the contiguous United States.
View Article and Find Full Text PDFBackground: Twitter has become the "wild-west" of marketing and promotional strategies for advertisement agencies. Electronic cigarettes have been heavily marketed across Twitter feeds, offering discounts, "kid-friendly" flavors, algorithmically generated false testimonials, and free samples.
Methods: All electronic cigarette keyword related tweets from a 10% sample of Twitter spanning January 2012 through December 2014 (approximately 850,000 total tweets) were identified and categorized as Automated or Organic by combining a keyword classification and a machine trained Human Detection algorithm.
Phys Rev E Stat Nonlin Soft Matter Phys
October 2015
In an effort to better understand meaning from natural language texts, we explore methods aimed at organizing lexical objects into contexts. A number of these methods for organization fall into a family defined by word ordering. Unlike demographic or spatial partitions of data, these collocation models are of special importance for their universal applicability.
View Article and Find Full Text PDFWith Zipf's law being originally and most famously observed for word frequency, it is surprisingly limited in its applicability to human language, holding over no more than three to four orders of magnitude before hitting a clear break in scaling. Here, building on the simple observation that phrases of one or more words comprise the most coherent units of meaning in language, we show empirically that Zipf's law for phrases extends over as many as nine orders of rank magnitude. In doing so, we develop a principled and scalable statistical mechanical method of random text partitioning, which opens up a rich frontier of rigorous text analysis via a rank ordering of mixed length phrases.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2015
Natural languages are full of rules and exceptions. One of the most famous quantitative rules is Zipf's law, which states that the frequency of occurrence of a word is approximately inversely proportional to its rank. Though this "law" of ranks has been found to hold across disparate texts and forms of data, analyses of increasingly large corpora since the late 1990s have revealed the existence of two scaling regimes.
View Article and Find Full Text PDFUsing human evaluation of 100,000 words spread across 24 corpora in 10 languages diverse in origin and culture, we present evidence of a deep imprint of human sociality in language, observing that (i) the words of natural human language possess a universal positivity bias, (ii) the estimated emotional content of words is consistent between languages under translation, and (iii) this positivity bias is strongly independent of frequency of word use. Alongside these general regularities, we describe interlanguage variations in the emotional spectrum of languages that allow us to rank corpora. We also show how our word evaluations can be used to construct physical-like instruments for both real-time and offline measurement of the emotional content of large-scale texts.
View Article and Find Full Text PDF