Ion implantation is widely utilised for the modification of inorganic semiconductors; however, the technique has not been extensively applied to lead halide perovskites. In this report, we demonstrate the modification of the optical properties of caesium lead bromide (CsPbBr) thin films via noble gas ion implantation. We observed that the photoluminescence (PL) lifetimes of CsPbBrthin films can be doubled by low fluences (<1 × 10at·cm) of ion implantation with an acceleration voltage of 20 keV.
View Article and Find Full Text PDFLuminescent solar concentrators (LSCs) concentrate light via luminescence within a planar-waveguide and have potential use for building-integrated photovoltaics. However, their commercialization and potential applications are currently hindered greatly by photon reabsorption, where emitted waveguided light is parasitically reabsorbed by a luminophore. Nanotetrapod semiconductor materials have been theorized to be excellent luminophores for LSCs owing to their inherently large Stokes shifts.
View Article and Find Full Text PDFACS Phys Chem Au
September 2022
Hybrid nanomaterials (HNs), the combination of organic semiconductor ligands attached to nanocrystal semiconductor quantum dots, have applications that span a range of practical fields, including biology, chemistry, medical imaging, and optoelectronics. Specifically, HNs operate as discrete, tunable systems that can perform prompt fluorescence, energy transfer, singlet fission, upconversion, and/or thermally activated delayed fluorescence. Interest in HNs has naturally grown over the years due to their tunability and broad spectrum of applications.
View Article and Find Full Text PDFThe lighting industry currently accounts for a significant proportion of all energy demand. Luminescent white lighting is often impure, inefficient, expensive, and detrimentally emits as a point source, meaning the light is emitted from a focused point. A luminescent light diffuser offers the potential to create a spatially broad lighting fixture.
View Article and Find Full Text PDFCesium lead halide perovskite nanocrystals exhibit high photoluminescence quantum efficiencies and tunability across the visible spectrum. This makes these crystals ideal candidates for solar panels, light-emitting diodes, lasers, and especially nanolasers. Due to the versatility of cation substitution in perovskite nanocrystals, they can be grown on amine-functionalized silicon dioxide nanoparticles, where the amine linker replaces the standard cation structure.
View Article and Find Full Text PDF