Publications by authors named "Jake B Hermanson"

Article Synopsis
  • * There's a lack of effective FDA-approved treatments for MASH despite many ongoing clinical trials, with only one drug (resmetirom) currently available, largely due to the complexity of the disease's causes.
  • * To improve treatment through precision medicine, it's essential to understand how genetics, diet, and gut microbiome interplay, and further research is needed to address existing knowledge gaps.
View Article and Find Full Text PDF

Skeletal muscle size is controlled by the balance between protein synthesis and protein degradation. Given the essential role of skeletal muscle in maintaining a high quality of life, understanding the mechanisms that modulate this balance are of critical importance. Previously, we demonstrated that muscle-specific knockout of TRIM28 reduces muscle size and function and in the current study, we discovered that this effect is associated with an increase in protein degradation and a dramatic reduction in the expression of Mettl21c.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is multifactorial in nature, affecting over a billion people worldwide. The gut microbiome has emerged as an associative factor in NAFLD, yet mechanistic contributions are unclear. Here, we show fast food (FF) diets containing high fat, added cholesterol, and fructose/glucose drinking water differentially impact short- vs.

View Article and Find Full Text PDF

Gut microbial diurnal oscillations are important diet-dependent drivers of host circadian rhythms and metabolism ensuring optimal energy balance. However, the interplay between diet, microbes, and host factors sustaining intestinal oscillations is complex and poorly understood. Here, using a mouse model, we report the host C-type lectin antimicrobial peptide Reg3γ works with key ileal microbes to orchestrate these interactions in a bidirectional manner and does not correlate with the intestinal core circadian clock.

View Article and Find Full Text PDF

Mechanical signals, such as those evoked by maximal-intensity contractions (MICs), can induce an increase in muscle mass. Rapamycin-sensitive signaling events are widely implicated in the regulation of this process; however, recent studies indicate that rapamycin-insensitive signaling events are also involved. Thus, to identify these events, we generate a map of the MIC-regulated and rapamycin-sensitive phosphoproteome.

View Article and Find Full Text PDF