Aviat Space Environ Med
February 2012
Introduction: Elevated metabolism is common to spaceflight while exercise in microgravity exacerbates energy costs. Thus in-flight exercise countermeasures must be devised that minimize energy costs as they are performed on hardware operable in microgravity.
Methods: Female subjects (N = 28), subdivided into athletic and sedentary groups, each performed two workouts on a resistive exercise device (Impulse Training Systems; Newnan, GA).
The purpose of our study was to assess data reproducibility from 2 consecutive front squat workouts, spaced 1 week apart, performed by American college football players (n = 18) as they prepared for their competitive season. For each workout, our methods entailed the performance of 3-6 front squat repetitions per set at 55, 65, and 75% of subject's 1 repetition maximum (1RM) load. In addition, a fourth set was done at a heavier load, with a resistance equal to 80 and 83% of their 1RM values, for the first and second workouts, respectively.
View Article and Find Full Text PDFThe purpose of our study was to examine the ability of anthropometric variables (body mass, total arm length, biacromial width) to predict bench press performance at both maximal and submaximal loads. Our methods required 36 men to visit our laboratory and submit to anthropometric measurements, followed by lifting as much weight as possible in good form one time (1 repetition maximum, 1RM) in the exercise. They made 3 more visits in which they performed 4 sets of bench presses to volitional failure at 1 of 3 (40, 55, or 75% 1RM) submaximal loads.
View Article and Find Full Text PDF