Objectives: To train the machine and deep learning models to automate the justification analysis of radiology referrals in accordance with iGuide categorisation, and to determine if prediction models can generalise across multiple clinical sites and outperform human experts.
Methods: Adult brain computed tomography (CT) referrals from scans performed in three CT centres in Ireland in 2020 and 2021 were retrospectively collected. Two radiographers analysed the justification of 3000 randomly selected referrals using iGuide, with two consultant radiologists analysing the referrals with disagreement.
J Med Imaging Radiat Sci
June 2023
Background And Purpose: Artificial intelligence (AI) is present in many areas of our lives. Much of the digital data generated in health care can be used for building automated systems to bring improvements to existing workflows and create a more personalised healthcare experience for patients. This review outlines select current and potential AI applications in medical imaging practice and provides a view of how diagnostic imaging suites will operate in the future.
View Article and Find Full Text PDFBackground: With a significant increase in utilisation of computed tomography (CT), inappropriate imaging is a significant concern. Manual justification audits of radiology referrals are time-consuming and require financial resources. We aimed to retrospectively audit justification of brain CT referrals by applying natural language processing and traditional machine learning (ML) techniques to predict their justification based on the audit outcomes.
View Article and Find Full Text PDF