Publications by authors named "Jajcay N"

One of the interesting aspects of EEG data is the presence of temporally stable and spatially coherent patterns of activity, known as microstates, which have been linked to various cognitive and clinical phenomena. However, there is still no general agreement on the interpretation of microstate analysis. Various clustering algorithms have been used for microstate computation, and multiple studies suggest that the microstate time series may provide insight into the neural activity of the brain in the resting state.

View Article and Find Full Text PDF

Current advances in epilepsy treatment aim to personalize and responsively adjust treatment parameters to overcome patient heterogeneity in treatment efficiency. For tailoring treatment to the individual and the current brain state, tools are required that help to identify the patient- and time-point-specific parameters of epilepsy. Computational modeling has long proven its utility in gaining mechanistic insight.

View Article and Find Full Text PDF

Purpose: The incidence of acute myocardial infarctions (AMI) shows circadian variation typically peaking during morning hours with a decline at night. However, this variation does not occur in patients with diabetes mellitus (DM). The night's decline of AMI may be partially explained by melatonin-related platelet inhibition.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advances in machine learning enable better analysis of patient data to predict outcomes, particularly for cardiogenic shock (CS) in patients with acute coronary syndrome using the MIMIC III database.
  • This study focuses on improving data quality through various imputation techniques to handle missing data, comparing methods like k-nearest neighbors and Multiple Imputation by Chained Equations.
  • The final model demonstrated strong classification performance with a mean area under the curve of 0.805, suggesting the potential utility of this data processing pipeline for other predictive analytics in healthcare.
View Article and Find Full Text PDF

Objectives: Purpose of this study was to evaluate properties of apelin, a peptide detectable in peripheral blood, for atrial fibrillation (AF) detection in a diverse population of patients covering a broad spectrum from healthy to polymorbid patients.

Background: AF is the most common cardiac arrhythmia with constantly increasing incidence and prevalence. Currently available diagnostic tools do not provide sufficient detection rate.

View Article and Find Full Text PDF

Sleep manifests itself by the spontaneous emergence of characteristic oscillatory rhythms, which often time-lock and are implicated in memory formation. Here, we analyze a neural mass model of the thalamocortical loop in which the cortical node can generate slow oscillations (approximately 1 Hz) while its thalamic component can generate fast sleep spindles of σ-band activity (12-15 Hz). We study the dynamics for different coupling strengths between the thalamic and cortical nodes, for different conductance values of the thalamic node's potassium leak and hyperpolarization-activated cation-nonselective currents, and for different parameter regimes of the cortical node.

View Article and Find Full Text PDF

Artificial intelligence (AI) is here to stay. It is not a future anymore, and there are many particular problems in cardiology that are already being solved via machine learning (ML), and many more are to come. AI cannot solve complex tasks yet, and probably this will not change in the upcoming years.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is associated with high risk of stroke preventable by timely initiation of anticoagulation. Currently available screening tools based on ECG are not optimal due to inconvenience and high costs. Aim of this study was to study the diagnostic value of apelin for AF in patients with high risk of stroke.

View Article and Find Full Text PDF

In this comparative study, six causality detection methods were compared, namely, the Granger vector autoregressive test, the extended Granger test, the kernel version of the Granger test, the conditional mutual information (transfer entropy), the evaluation of cross mappings between state spaces, and an assessment of predictability improvement due to the use of mixed predictions. Seven test data sets were analyzed: linear coupling of autoregressive models, a unidirectional connection of two Hénon systems, a unidirectional connection of chaotic systems of Rössler and Lorenz type and of two different Rössler systems, an example of bidirectionally connected two-species systems, a fishery model as an example of two correlated observables without a causal relationship, and an example of mediated causality. We tested not only 20000 points long clean time series but also noisy and short variants of the data.

View Article and Find Full Text PDF

Nonparametric detection of coupling delay in unidirectionally and bidirectionally coupled nonlinear dynamical systems is examined. Both continuous and discrete-time systems are considered. Two methods of detection are assessed-the method based on conditional mutual information-the CMI method (also known as the transfer entropy method) and the method of convergent cross mapping-the CCM method.

View Article and Find Full Text PDF

A directed climate network is constructed by Granger causality analysis of air temperature time series from a regular grid covering the whole Earth. Using winner-takes-all network thresholding approach, a structure of a smooth information flow is revealed, hidden to previous studies. The relevance of this observation is confirmed by comparison with the air mass transfer defined by the wind field.

View Article and Find Full Text PDF

Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions.

View Article and Find Full Text PDF

Identifying regions important for spreading and mediating perturbations is crucial to assess the susceptibilities of spatio-temporal complex systems such as the Earth's climate to volcanic eruptions, extreme events or geoengineering. Here a data-driven approach is introduced based on a dimension reduction, causal reconstruction, and novel network measures based on causal effect theory that go beyond standard complex network tools by distinguishing direct from indirect pathways. Applied to a data set of atmospheric dynamics, the method identifies several strongly uplifting regions acting as major gateways of perturbations spreading in the atmosphere.

View Article and Find Full Text PDF