Multidrug resistance of pathogenic bacteria has become a public health crisis that requires the urgent design of new antibacterial drugs such as antimicrobial peptides (AMPs). Seeking to obtain new, lactoferricin B (LfcinB)-based synthetic peptides as viable early-stage candidates for future development as AMPs against clinically relevant bacteria, we designed, synthesized and screened three new cationic peptides derived from bovine LfcinB. These peptides contain at least one RRWQWR motif and differ by the copy number (monomeric, dimeric or tetrameric) and structure (linear or branched) of this motif.
View Article and Find Full Text PDFOral squamous cell carcinoma is the fifth most common epithelial cancer in the world, and its current clinical treatment has both low efficiency and poor selectivity. Cationic amphipathic peptides have been proposed as new drugs for the treatment of different types of cancer. The main goal of the present work was to determine the potential of LfcinB(20-25)4, a tetrameric peptide based on the core sequence RRWQWR of bovine lactoferricin LfcinB(20-25), for the treatment of OSCC.
View Article and Find Full Text PDFSeveral short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells.
View Article and Find Full Text PDFNaproxen (NPX)-loaded poly-(D,L-lactic-co-glycolic acid) (PLGA) microparticles were prepared by the emulsion-solvent evaporation method. The different organic solvents used significantly affects the properties of the microparticles obtained. These microparticles exhibited a controlled release profile that extends up to 15 days depending on the organic solvent used.
View Article and Find Full Text PDFThe aim of this work was to test, evaluate, and compare the immunogenicity of the S3 malarial short synthetic model peptide in Balb/c mice when it was delivered with different adjuvants. Specifically, it studied the adjuvanticity of two different particulate delivery systems, human compatible Montanide((R)) ISA 720 w/o emulsion and poly-lactide-co-glycolide acid microparticles, in terms of the enhancement and sub-set type of the immune response elicited following immunization. Aditionally, conventional aluminum hydroxide gel adjuvant was included as a reference.
View Article and Find Full Text PDFGamma-irradiation is currently the method of choice for terminal sterilization of drug delivery systems made from biodegradable polymers. However, the consequences of gamma-sterilization on the immune response induced by microencapsulated antigens have not yet been reported in the literature. The aim of the present work was to evaluate the effect of gamma-irradiation on the biopharmaceutical properties of PLGA microspheres containing SPf66 malarial antigen.
View Article and Find Full Text PDFEpstein-Barr virus (EBV) invasion of B-lymphocytes involves EBV gp350/220 binding to B-lymphocyte CR2. The anti-gp350 monoclonal antibody (mAb)-72A1 Fab inhibits this binding and therefore blocks EBV invasion of target cells. However, gp350/220 regions interacting with mAb 72A1 and involved in EBV invasion of target cells have not yet been identified.
View Article and Find Full Text PDFPurpose: Our purpose was to evaluate the ability of a polymeric vehicle to release a model synthetic vaccine to the skin in order to reach a potent activation of the specific immune response.
Methods: The peptide-loaded poly-D,L-lactide-co-glycolide acid (PLGA) microparticles were prepared by a double emulsion technique and administered to Balb/c mice. The immune response (antibody and T cell activation) obtained by the intradermal (i.