Trends Plant Sci
November 2023
In eukaryotes, the highly complex chromatin exhibits structural dynamism to modulate cellular responses. Recently, Huang et al. have shown a novel role of the heat stress master regulator, HSFA1a, in transiently reorganizing the 3D chromatin to promote distal and proximal enhancer-promoter contacts to regulate stress-responsive genes in tomato.
View Article and Find Full Text PDFCultivar-biased regulation of HSFB4a and HSFA7 mediates heat stress tolerance/sensitivity in tomato. Reduced HSFB4a repressor levels and enhanced HSFA7 activator levels govern thermo-tolerance in tolerant cultivars. Heat shock factors (HSFs) are at the core of heat stress (HS) response in plants.
View Article and Find Full Text PDFThe footprint of tomato cultivation, a cool region crop that exhibits heat stress (HS) sensitivity, is increasing in the tropics/sub-tropics. Knowledge of novel regulatory hot spots from varieties growing in the Indian sub-continent climatic zones could be vital for developing HS-resilient crops. Comparative transcriptome-wide signatures of a tolerant (CLN1621L) and sensitive (CA4) cultivar pair shortlisted from a pool of varieties exhibiting variable thermo-sensitivity using physiological-, survival- and yield-related traits revealed redundant to cultivar-specific HS regulation.
View Article and Find Full Text PDF