Cultivations of Chinese Hamster Ovary (CHO) cells in a perfusion setup were conducted in the presence of super physiological concentrations of L-Arginine to investigate the impact on transmission through the perfusion filter for production of a recombinant domain antibody. Our study revealed that the presence of L-Arginine within the range of 30-50 mM had a positive impact on transmission. However, the higher concentrations were found to have a negative correlation with cell viability, and an optimal concentration of approximately 40 mM was identified.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2023
Monoclonal antibodies (mAbs) have successfully been developed for the treatment of a wide range of diseases. The clinical success of mAbs does not solely rely on optimal potency and safety but also require good biophysical properties to ensure a high developability potential. In particular, nonspecific interactions are a key developability parameter to monitor during discovery and development.
View Article and Find Full Text PDFBackground: The regulation of factor X (FX) is critical to maintain the balance between blood coagulation and fluidity.
Objectives: To functionally characterize the role of the FX autolysis loop in the regulation of the zymogen and active form of FX.
Methods: We introduced novel N-linked glycosylations on the surface-exposed loop spanning residues 143-150 (chymotrypsin numbering) of FX.
In addition to activity, successful biological drugs must exhibit a series of suitable developability properties, which depend on both protein sequence and buffer composition. In the context of this high-dimensional optimization problem, advanced algorithms from the domain of machine learning are highly beneficial in complementing analytical screening and rational design. Here, we propose a Bayesian optimization algorithm to accelerate the design of biopharmaceutical formulations.
View Article and Find Full Text PDFTools to monitor SARS-CoV-2 transmission and immune responses are needed. We present a neutralization ELISA to determine the levels of Ab-mediated virus neutralization and a preclinical model of focused immunization strategy. The ELISA is strongly correlated with the elaborate plaque reduction neutralization test (ρ = 0.
View Article and Find Full Text PDFHemophilia A is a bleeding disorder resulting from deficient factor VIII (FVIII), which normally functions as a cofactor to activated factor IX (FIXa) that facilitates activation of factor X (FX). To mimic this property in a bispecific antibody format, a screening was conducted to identify functional pairs of anti-FIXa and anti-FX antibodies, followed by optimization of functional and biophysical properties. The resulting bispecific antibody (Mim8) assembled efficiently with FIXa and FX on membranes, and supported activation with an apparent equilibrium dissociation constant of 16 nM.
View Article and Find Full Text PDFGlobally, the COVID-19 pandemic has had extreme consequences for the healthcare system and has led to calls for diagnostic tools to monitor and understand the transmission, pathogenesis, and epidemiology, as well as to evaluate future vaccination strategies. In this study, we have developed novel, to our knowledge, flexible ELISA-based assays for specific detection of human SARS-CoV-2 Abs against the receptor-binding domain, including an Ag sandwich ELISA relevant for large population screening and three isotype-specific assays for in-depth diagnostics. Their performance was evaluated in a cohort of 350 convalescent participants with previous COVID-19 infection, ranging from asymptomatic to critical cases.
View Article and Find Full Text PDFDespite major advances in antibody discovery technologies, the successful development of monoclonal antibodies (mAbs) into effective therapeutic and diagnostic agents can often be impeded by developability liabilities, such as poor expression, low solubility, high viscosity and aggregation. Therefore, strategies to predict at the early phases of antibody development the risk of late-stage failure of antibody candidates are highly valuable. In this work, we employ the in silico solubility predictor CamSol to design a library of 17 variants of a humanized mAb predicted to span a broad range of solubility values, and we examine their developability potential with a battery of commonly used in vitro and in silico assays.
View Article and Find Full Text PDFCurrent management of hemophilia B entails multiple weekly infusions of factor IX (FIX) to prevent bleeding episodes. In an attempt to make a longer acting recombinant FIX (rFIX), we have explored a new releasable protraction concept using the native N-glycans in the activation peptide as sites for attachment of polyethylene glycol (PEG). Release of the activation peptide by physiologic activators converted glycoPEGylated rFIX (N9-GP) to native rFIXa and proceeded with normal kinetics for FXIa, while the K(m) for activation by FVIIa-tissue factor (TF) was increased by 2-fold.
View Article and Find Full Text PDFThe complex of factor VIIa (FVIIa) with tissue factor (TF) triggers coagulation by recognizing its macromolecular substrate factors IX (FIX) and X (FX) predominantly through extended exosite interactions. In addition, TF mediates unique cell-signaling properties in cancer, angiogenesis, and inflammation that involve proteolytic cleavage of protease-activated receptor 2 (PAR2). PAR2 is cleaved by FVIIa in the binary TF.
View Article and Find Full Text PDFThe intrinsic activity of coagulation factor VIIa (FVIIa) is dependent on Ca(2+) binding to a loop (residues 210-220) in the protease domain. Structural analysis revealed that Ca(2+) may enhance the activity by attenuating electrostatic repulsion of Glu(296) and/or by facilitating interactions between the loop and Lys(161) in the N-terminal tail. In support of the first mechanism, the mutations E296V and D212N resulted in similar, about 2-fold, enhancements of the amidolytic activity.
View Article and Find Full Text PDFThe remarkably high specificity of the coagulation proteases towards macromolecular substrates is provided by numerous interactions involving the catalytic groove and remote exosites. For FVIIa [activated FVII (Factor VII)], the principal initiator of coagulation via the extrinsic pathway, several exosites have been identified, whereas only little is known about the specificity dictated by the active-site architecture. In the present study, we have profiled the primary P4-P1 substrate specificity of FVIIa using positional scanning substrate combinatorial libraries and evaluated the role of the selective active site in defining specificity.
View Article and Find Full Text PDFCoagulation factor VIIa (FVIIa) belongs to a family of proteases being part of the stepwise, self-amplifying blood coagulation cascade. To investigate the impact of the mutation Met(298{156})Lys in FVIIa, we replaced the Gly(283{140})-Met(298{156}) loop with the corresponding loop of factor Xa. The resulting variant exhibited increased intrinsic activity, concurrent with maturation of the active site, a less accessible N-terminus, and, interestingly, an altered macromolecular substrate specificity reflected in an increased ability to cleave factor IX (FIX) and a decreased rate of FX activation compared to that of wild-type FVIIa.
View Article and Find Full Text PDFDipeptidyl peptidases 8 and 9 have been identified as gene members of the S9b family of dipeptidyl peptidases. In the present paper, we report the characterization of recombinant dipeptidyl peptidases 8 and 9 using the baculovirus expression system. We have found that only the full-length variants of the two proteins can be expressed as active peptidases, which are 882 and 892 amino acids in length for dipeptidyl peptidase 8 and 9 respectively.
View Article and Find Full Text PDFHuman dipeptidyl peptidase IV (DPP-IV) is a ubiquitously expressed type II transmembrane serine protease. It cleaves the penultimate positioned prolyl bonds at the N terminus of physiologically important peptides such as the incretin hormones glucagon-like peptide 1 and glucose-dependent insulinotropic peptide. In this study, we have characterized different active site mutants.
View Article and Find Full Text PDF