Amyloid β (Aβ) oligomers are the most neurotoxic forms of Aβ, and Aβ(1-42) is the prevalent Aβ peptide found in the amyloid plaques of Alzheimer's disease patients. Aβ(25-35) is the shortest peptide that retains the toxicity of Aβ(1-42). Aβ oligomers bind to calmodulin (CaM) and calbindin-D28k with dissociation constants in the nanomolar Aβ(1-42) concentration range.
View Article and Find Full Text PDFKaempferol is a natural antioxidant present in vegetables and fruits used in human nutrition. In previous work, we showed that intraperitoneal (i.p.
View Article and Find Full Text PDFAmyloid β (Aβ(1-42)) oligomers have been linked to the pathogenesis of Alzheimer's disease (AD). Intracellular calcium (Ca) homeostasis dysregulation with subsequent alterations of neuronal excitability has been proposed to mediate Aβ neurotoxicity in AD. The Ca binding proteins calmodulin (CaM) and calbindin-D28k, whose expression levels are lowered in human AD brains, have relevant roles in neuronal survival and activity.
View Article and Find Full Text PDFIntraneuronal amyloid β (Aβ) oligomer accumulation precedes the appearance of amyloid plaques or neurofibrillary tangles and is neurotoxic. In Alzheimer's disease (AD)-affected brains, intraneuronal Aβ oligomers can derive from Aβ peptide production within the neuron and, also, from vicinal neurons or reactive glial cells. Calcium homeostasis dysregulation and neuronal excitability alterations are widely accepted to play a key role in Aβ neurotoxicity in AD.
View Article and Find Full Text PDFLipid rafts are a primary target in studies of amyloid β (Aβ) cytotoxicity in neurons. Exogenous Aβ peptides bind to lipid rafts, which in turn play a key role in Aβ uptake, leading to the formation of neurotoxic intracellular Aβ aggregates. On the other hand, dysregulation of intracellular calcium homeostasis in neurons has been observed in Alzheimer's disease (AD).
View Article and Find Full Text PDF3-Nitropropionic acid (NPA) administration to rodents produces degeneration of the striatum, accompanied by neurological disturbances that mimic Huntington's disease (HD) motor neurological dysfunctions. It has been shown that inflammation mediates NPA-induced brain degeneration, and activated microglia secreting cytokines interleukin-1α (IL-1α) and tumor necrosis factor α (TNFα) can induce a specific type of reactive neurotoxic astrocytes, named A1, which have been detected in post-mortem brain samples of Huntington's, Alzheimer's, and Parkinson's diseases. In this work we used an experimental model based on the intraperitoneal (i.
View Article and Find Full Text PDFParkinson's disease is characterized by progressive death of dopaminergic neurons, leading to motor and cognitive dysfunction. Epidemiological studies consistently show that the use of tobacco reduces the risk of Parkinson's. We report that nicotine reduces the abundance of SIRT6 in neuronal culture and brain tissue.
View Article and Find Full Text PDF