Publications by authors named "Jairo J Pedrotti"

In this work, flower-like molybdenum disulfide (MoS) microspheres were produced with polyethylene glycol (PEG) to form MoS-PEG. Likewise, gold nanoparticles (AuNPs) were added to form MoS-PEG/Au to investigate its potential application as a theranostic nanomaterial. These nanomaterials were fully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), photoelectron X-ray spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR), cyclic voltammetry and impedance spectroscopy.

View Article and Find Full Text PDF

Herein we describe a successful protocol for graphite exfoliation using a biphasic liquid system (water/dichloromethane, DCM) containing ionic liquids (ILs; 1,3-dibenzylimidazolium benzoate- and 1-naphthoate). The use of (surface active) IL and sonication led to stable DCM/water (O/W) emulsion, which enhanced graphene formation, suppressed its re-aggregation and decreased shear/cavitation damage. The O/W emulsion stabilization by the ILs was studied by dynamic light scattering (DLS), whereas their interaction with the graphene sheets were described by Density Functional Theory (DFT) calculations.

View Article and Find Full Text PDF

Two-dimensional (2D) nanomaterials as molybdenum disulfide (MoS), hexagonal boron nitride (h-BN), and their hybrid (MoS/h-BN) were employed as fillers to improve the physical properties of epoxy composites. Nanocomposites were produced in different concentrations and studied in their microstructure, mechanical and thermal properties. The hybrid 2D mixture imparted efficient reinforcement to the epoxy leading to increases of up to 95% in tensile strength, 60% in ultimate strain, and 58% in Young's modulus.

View Article and Find Full Text PDF

Ammonia is a key alkaline species, playing an important role by neutralizing atmospheric acidity and inorganic secondary aerosol production. On the other hand, the NH3/NH4 (+) increases the acidity and eutrophication in natural ecosystems, being NH3 classified as toxic atmospheric pollutant. The present study aims to give a better comprehension of the nitrogen content species distribution in fine and coarse particulate matter (PM2.

View Article and Find Full Text PDF

A fast and robust analytical method for amperometric determination of hydrogen peroxide (H(2)O(2)) based on batch injection analysis (BIA) on an array of gold microelectrodes modified with platinum is proposed. The gold microelectrode array (n=14) was obtained from electronic chips developed for surface mounted device technology (SMD), whose size offers advantages to adapt them in batch cells. The effect of the dispensing rate, volume injected, distance between the platinum microelectrodes and the pipette tip, as well as the volume of solution in the cell on the analytical response were evaluated.

View Article and Find Full Text PDF

A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH(3)CH(2)OCS(2)(-) at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate, EtX(-), with 2.0 mol L(-1) HCl generating ethanol and carbon disulfide, CS(2).

View Article and Find Full Text PDF

A simple, robust and fast-responding flow adaptor for mercury drop electrodes (MDEs) is described. An L-shaped PTFE tube with an internal diameter of 0.5 mm is fixed with a silicone ring on the glass capillary of a MDE, in such a way as to direct the outcoming flow onto the mercury drop, from a distance of about 0.

View Article and Find Full Text PDF

A simple and sensitive spectrophotometric flow method for determination of low concentrations of the flotation collector O-ethyldithiocarbonate (ethyl xanthate, CH(3)CH(2)-O-CS(2)(-)) in solutions is described. The method is based on ethyl xanthate detection at 301nm in medium of NaOH 50mmolL(-1). By injection of 200muL of sample, the analytical method shows linear response for the ethyl xanthate concentration from 0.

View Article and Find Full Text PDF