Preventing microbiological surface contamination in public spaces is nowadays of high priority. The proliferation of a microbial infection may arise through air, water, or direct contact with infected surfaces. Chemical sanitization is one of the most effective approaches to avoid the proliferation of microorganisms.
View Article and Find Full Text PDFIn this work we report the development and validation of a photoelectrochemical immunosensor on the basis of alkaline phosphatase (ALP)-linked immunoassay for the detection of human serum albumin as a model analyte. In this biosensor, oriented immobilization of capture antibodies on aminated polystyrene was achieved physical adsorption. After the interaction with the analyte, ALP immobilised on the surface through the sandwich immunoassay catalyses the hydrolysis of sodium thiophosphate (TP) to hydrogen sulphide (HS) which in the presence of cadmium ions yields CdS quantum dots (QDs).
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
July 2020
In this work the modification of polystyrene micro-well plates and their use as bioanalytical platform is described. A wet-chemical procedure was applied for the chlorosulfonation of these polystyrene substrates (PS) resulting in well-controlled and reactive surfaces. This method enabled the production of transparent and stable substrates under ambient conditions.
View Article and Find Full Text PDF