Small RNA sequencing analysis in two chickpea genotypes, JG 62 (Fusarium wilt-susceptible) and WR 315 (Fusarium wilt-resistant), under Fusarium wilt stress led to identification of 544 miRNAs which included 406 known and 138 novel miRNAs. A total of 115 miRNAs showed differential expression in both the genotypes across different combinations. A miRNA, Car-miR398 targeted copper chaperone for superoxide dismutase (CCS) that, in turn, regulated superoxide dismutase (SOD) activity during chickpea-Foc interaction.
View Article and Find Full Text PDFThe present study investigated the linkage between days to flowering (DTF) and growth habit (GH) in pigeonpea using QTL mapping, QTL-seq, and GWAS approaches. The linkage map developed here is the largest to date, spanning 1825.56 cM with 7987 SNP markers.
View Article and Find Full Text PDFThe swelling pressure of bentonite and bentonite mixtures is critical in designing barrier systems for deep geological radioactive waste repositories. Accurately predicting the maximum swelling pressure is essential for ensuring these systems' long-term stability and sealing characteristics. In this study, we developed a constrained machine learning model based on the extreme gradient boosting (XGBoost) algorithm tuned with grey wolf optimization (GWO) to determine the maximum swelling pressure of bentonite and bentonite mixtures.
View Article and Find Full Text PDFThis paper discusses efforts made by past researchers to steady the expansive (problematic) soils using mechanical and chemical techniques - specifically with EPS beads, lime and fly ash. Administering swelling of problematic soils is critical for civil engineers to prevent structural distress. This paper summarizes studies on reduction of swelling potential using EPS, lime and fly ash individually.
View Article and Find Full Text PDFChickpea, being an important grain legume crop, is often confronted with the adverse effects of high temperatures at the reproductive stage of crop growth, drastically affecting yield and overall productivity. The current study deals with an extensive evaluation of chickpea genotypes, focusing on the traits associated with yield and their response to heat stress. Notably, we observed significant variations for these traits under both normal and high-temperature conditions, forming a robust basis for genetic research and breeding initiatives.
View Article and Find Full Text PDF, the wheat seed gall nematode, causes the 'ear-cockle' or seed gall disease of wheat (), leading to an extensive decline of yield (30-70%) in underdeveloped wheat cultivating countries of the world. The nematode is known to survive in anhydrobiotic conditions for up to 32 years. Here, we present the first transcriptome assembly of , which will be a valuable resource for understanding the genes responsible for nematode survival and above-ground plant parasitism.
View Article and Find Full Text PDFis the first plant-parasitic nematode described in literature, dating back to the year 1743. It is responsible for causing earcockle (seed gall) and tundu diseases in wheat and rye. Notably, this nematode has been observed to survive in an anhydrobiotic state for up to 32 years within wheat seed galls.
View Article and Find Full Text PDFUnlabelled: To unravel the plastid genome diversity among the cultivated groups of the pigeonpea germplasm, we characterized the SNP occurrence and distribution of 142 pigeonpea mini-core collections based on their reference-based assembly of the chloroplast genome. A total of 8921 SNPs were found, which were again filtered and finally 3871 non-synonymous SNPs were detected and used for diversity estimates. These 3871 SNPs were classified into 12 groups and were present in only 44 of the 125 genes, demonstrating the presence of a precise mechanism for maintaining the whole chloroplast genome throughout evolution.
View Article and Find Full Text PDFBackground: Genetic analysis of gladiolus germplasm using simple sequence repeat (SSR) markers is largely missing due to scarce genomic information. Hence, microsatellites identified for related genera or species may be utilized to understand the genetic diversity and assess genetic relationships among cultivated gladiolus varieties.
Methods: In the present investigation, we screened 26 genomic SSRs (, , ), 14 chloroplast SSRs spp, chloroplast DNA regions and 25 Expressed Sequence Tags (ESTs) derived SSRs across the 84 gladiolus ( L.
High temperatures present a formidable challenge to the cultivation of hot pepper, profoundly impacting not only vegetative growth but also leading to flower and fruit abscission, thereby causing a significant reduction in yield. To unravel the intricate genetic mechanisms governing heat tolerance in hot pepper, an F population was developed through the crossing of two distinct genotypes exhibiting contrasting heat tolerance characteristics: DLS-161-1 (heat tolerant) and DChBL-240 (heat susceptible). The F population, along with the parental lines, was subjected to comprehensive phenotyping encompassing diverse morphological, physiological, and biochemical heat-related traits under high temperature conditions (with maximum temperature ranging from 31 to 46.
View Article and Find Full Text PDFTo combat drought stress in rice, a major threat to global food security, three major quantitative trait loci for 'yield under drought stress' (qDTYs) were successfully exploited in the last decade. However, their molecular basis still remains unknown. To understand the role of secondary regulation by miRNA in drought stress response and their relation, if any, with the three qDTYs, the miRNA dynamics under drought stress was studied at booting stage in two drought tolerant (Sahbaghi Dhan and Vandana) and one drought sensitive (IR 20) cultivars.
View Article and Find Full Text PDFAmino acid transporters (AATs), besides, being a crucial component for nutrient partitioning system are also vital for growth and development of the plants and stress resilience. In order to understand the role of AAT genes in seed quality proteins, a comprehensive analysis of AAT gene family was carried out in chickpea leading to identification of 109 AAT genes, representing 10 subfamilies with random distribution across the chickpea genome. Several important stress responsive cis-regulatory elements like Myb, ABRE, ERE were detected in the promoter region of these CaAAT genes.
View Article and Find Full Text PDFPigeonpea, a tropical photosensitive crop, harbors significant diversity for days to flowering, but little is known about the genes that govern these differences. Our goal in the current study was to use genome wide association strategy to discover the loci that regulate days to flowering in pigeonpea. A single trait as well as a principal component based association study was conducted on a diverse collection of 142 pigeonpea lines for days to first and fifty percent of flowering over 3 years, besides plant height and number of seeds per pod.
View Article and Find Full Text PDFMultidrug and toxic compound extrusion (MATE) transporters comprise a multigene family that mediates multiple functions in plants through the efflux of diverse substrates including organic molecules, specialized metabolites, hormones, and xenobiotics. MATE classification based on genome-wide studies remains ambiguous, likely due to a lack of large-scale phylogenomic studies and/or reference sequence datasets. To resolve this, we established a phylogeny of the plant MATE gene family using a comprehensive kingdom-wide phylogenomic analysis of 74 diverse plant species.
View Article and Find Full Text PDFUnlabelled: MADS box genes are class of transcription factors involved in various physiological and developmental processes in plants. To understand their role in floral transition-related pathways, a genome-wide identification was done in , identifying 102 members which were classified into two different groups based on their gene structure. The status of all these genes was further analyzed in three wild species i.
View Article and Find Full Text PDFThe Achanta Lakshmipathi Neurosurgical Center (ALNC) and Post Graduate Institute of Neurological Surgery is a private teaching neurosurgical institution located in the VHS (Voluntary Health Services) Hospital Chennai. It has been a leader and trendsetter among the private academic neurosurgical training institutions, and because of its unique legacy, has influenced the progress of Neurosurgery in India. The center was the second neurosurgical Institute to be created by Prof.
View Article and Find Full Text PDFPlants, being sessile organisms, have evolved several dynamic mechanisms of gene regulation. Epigenetic modification especially cytosine methylation and demethylation actively regulates the expression of genes. To understand the role of cytosine methylation during isoflavonoid biosynthesis and accumulation, we performed cytosine methylation analysis in the coding region of two isoforms and gene, in two contrasting soybean genotypes differing in total isoflavone content (NRC37: high isoflavone; and NRC7: low isoflavone).
View Article and Find Full Text PDFDespite the significant importance of soybean isoflavone, the regulatory mechanism of miRNAs during its biosynthesis is highly unexplored. In the present work, nine existing miRNAs along with their ten corresponding target genes were identified and validated in soybean for their possible role during isoflavonoid biosynthesis and accumulation. Temporal expression analysis at four key stages of seed development (35, 45, 55 and 65DAF) of all the miRNA-target pairs showed varying degree of differential accumulation in two soybean genotypes (NRC37: high isoflavone; and NRC7: low isoflavone).
View Article and Find Full Text PDFA promoter trap mutant line of Arabidopsis carrying a promoterless β-glucuronidase (uidA) gene exhibited GUS expression predominantly in all the trichomes. In this mutant, the T-DNA insertion was localized at 147bp upstream of the putative start codon, ATG, of the At5g11190 (SHN2) gene. Transcript profiling of the SHN2 suggested a constitutive expression of the gene in all the tissues.
View Article and Find Full Text PDFJ Plant Res
May 2018
The heat stress transcription factors (Hsfs) play a prominent role in thermotolerance and eliciting the heat stress response in plants. Identification and expression analysis of Hsfs gene family members in chickpea would provide valuable information on heat stress responsive Hsfs. A genome-wide analysis of Hsfs gene family resulted in the identification of 22 Hsf genes in chickpea in both desi and kabuli genome.
View Article and Find Full Text PDFCuticle collagens form a major part of the nematode cuticle and are responsible for maintaining the overall shape of the animal and its protection from the external environment. Although substantial research on cuticle collagen genes has been carried out in Caenorhabditis elegans, their isolation and characterization in plant parasitic nematodes have been limited to a few genes only. In this study, a cuticle collagen gene, Mi-col-5, was isolated from root-knot nematode, Meloidogyne incognita.
View Article and Find Full Text PDFChickpea (Cicer arietinum) is the second most widely grown legume worldwide and is the most important pulse crop in the Indian subcontinent. Chickpea productivity is adversely affected by a large number of biotic and abiotic stresses. MicroRNAs (miRNAs) have been implicated in the regulation of plant responses to several biotic and abiotic stresses.
View Article and Find Full Text PDFSmall RNA (sRNA) molecules are non-coding RNAs that have been implicated in regulation of various cellular processes in living systems, allowing them to adapt to changing environmental conditions. Till date, sRNAs have not been reported in Acinetobacter baumannii (A. baumannii), which has emerged as a significant multiple drug resistant nosocomial pathogen.
View Article and Find Full Text PDFBackground: Escherichia coli have an optimum pH range of 6-7 for growth and survival that's why, called neutrophiles. The ΔpH across the cytoplasmic membrane is linked to cellular bioenergetics and metabolism of the body which is the major supplier of the proton motive force, so homeostasis of cellular pH is essential. When challenged by low pH, protons enter the cytoplasm; as a result, mechanisms are required to alleviate the effects of lowered cytoplasmic pH.
View Article and Find Full Text PDF