Joint independent component analysis (jICA) can be applied within subject for fusion of multi-channel event-related potentials (ERP) and functional magnetic resonance imaging (fMRI), to measure brain function at high spatiotemporal resolution (Mangalathu-Arumana et al., 2012). However, the impact of experimental design choices on jICA performance has not been systematically studied.
View Article and Find Full Text PDFNeuroanatomical models hypothesize a role for the dorsal auditory pathway in phonological processing as a feedforward efferent system (Davis and Johnsrude, 2007; Rauschecker and Scott, 2009; Hickok et al., 2011). But the functional organization of the pathway, in terms of time course of interactions between auditory, somatosensory, and motor regions, and the hemispheric lateralization pattern is largely unknown.
View Article and Find Full Text PDFJACC Cardiovasc Imaging
December 2011
Objectives: The aim of this study was to investigate the capabilities of balanced steady-state free precession (bSSFP) cardiac magnetic resonance imaging as a novel cine imaging approach for characterizing myocardial edema in animals and patients after reperfused myocardial infarction.
Background: Current cardiac magnetic resonance methods require 2 separate scans for assessment of myocardial edema and cardiac function.
Methods: Mini-pigs (n = 13) with experimentally induced reperfused myocardial infarction and patients with reperfused ST-segment elevation myocardial infarction (n = 26) underwent cardiac magnetic resonance scans on days 2 to 4 post-reperfusion.
Purpose: To examine the dependence of steady-state free-precession (SSFP) -based myocardial blood-oxygen-level-dependent (BOLD) contrast on field strength using theoretical and experimental models.
Materials And Methods: Numerical simulations using a two-pool exchange model and a surgically prepared dog model were used to assess the SSFP-based myocardial BOLD signal changes at 1.5T and 3.
The objectives of this work were: 1) to perform a comparative evaluation of the oxygen-sensitive contrast (OC) derived from the phase-cycled steady-state free precession (SSFP PC) method against T*2-weighted gradient recalled echo (GRE) and T2-prepared (T2-prep) methods with theoretical simulations and imaging studies using an ischemic leg cuff model at 1.5T and 3.0T; and 2) to investigate the dependence of SSFP PC-based OC on imaging parameters.
View Article and Find Full Text PDFObjective: This study investigates whether cardiac phase-resolved steady-state free precession (SSFP) magnetic resonance imaging can be used to detect regional myocardial oxygen deficits (MODs) and other functional changes (wall motion and ejection fraction) caused by coronary artery stenosis in a canine model.
Materials And Methods: Subsequent to changing the degree of stenosis of the left circumflex arteries of 8 dogs, cardiac phase-resolved SSFP images were acquired at baseline, prestensois (with adenosine), and at different stenosis levels and were correlated against true flow changes. Wall motion and ejection fraction changes also were assessed under the different stenosis levels.