The present work investigates the mechanical properties of a composite material composed of multi-walled carbon nanotubes (MWCNTs), nano-aluminum powder (NAP), and glass fibers (GF) for five different compositions. The study further investigated how MWCNTs contribute to maintaining the mechanical properties of nanocomposites when exposed to elevated temperatures, up to 180 °C. The evaluation of impact strength revealed that the nanocomposite, composed of 2 % MWCNTs, 15 % NAP, and 10 % GF, demonstrated the greatest impact strength.
View Article and Find Full Text PDFDistilled water and aqueous fullerene nanofluids having concentrations of 0.02, 0.2, and 0.
View Article and Find Full Text PDFThe purpose of this study is to explore two concepts: first, the use of artificial neural networks (ANN) to forecast the base pressure (β) and wall pressure (ω) originating from a suddenly expanded flow field at subsonic Mach numbers. Second, the implementation of Garson approach to determine the critical operating parameters affecting the suddenly expanded subsonic flow process in the subsonic range. In a MATLAB environment, a network model was constructed based on a multilayer perceptron with an input, hidden, and output layer.
View Article and Find Full Text PDF