Publications by authors named "Jaime Zabalza"

Singular spectral analysis (SSA) has recently been successfully applied to feature extraction in hyperspectral image (HSI), including conventional (1-D) SSA in spectral domain and 2-D SSA in spatial domain. However, there are some drawbacks, such as sensitivity to the window size, high computational complexity under a large window, and failing to extract joint spectral-spatial features. To tackle these issues, in this article, we propose superpixelwise adaptive SSA (SpaSSA), that is superpixelwise adaptive SSA for exploiting local spatial information of HSI.

View Article and Find Full Text PDF

The layer-by-layer printing process of additive manufacturing methods provides new opportunities to embed identification codes inside parts during manufacture. These embedded codes can be used for product authentication and identification of counterfeits. The availability of reverse engineering tools has increased the risk of counterfeit part production and new authentication technologies such as the one proposed in this paper are required for many applications including aerospace components and medical implants and devices.

View Article and Find Full Text PDF

The novel coronavirus disease 2019 (COVID-19) pandemic has led to a worldwide crisis in public health. It is crucial we understand the epidemiological trends and impact of non-pharmacological interventions (NPIs), such as lockdowns for effective management of the disease and control of its spread. We develop and validate a novel intelligent computational model to predict epidemiological trends of COVID-19, with the model parameters enabling an evaluation of the impact of NPIs.

View Article and Find Full Text PDF

Band selection has become a significant issue for the efficiency of the hyperspectral image (HSI) processing. Although many unsupervised band selection (UBS) approaches have been developed in the last decades, a flexible and robust method is still lacking. The lack of proper understanding of the HSI data structure has resulted in the inconsistency in the outcome of UBS.

View Article and Find Full Text PDF

Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used.

View Article and Find Full Text PDF

Traditional industry is seeing an increasing demand for more autonomous and flexible manufacturing in unstructured settings, a shift away from the fixed, isolated workspaces where robots perform predefined actions repetitively. This work presents a case study in which a robotic manipulator, namely a KUKA KR90 R3100, is provided with smart sensing capabilities such as vision and adaptive reasoning for real-time collision avoidance and online path planning in dynamically-changing environments. A machine vision module based on low-cost cameras and color detection in the hue, saturation, value (HSV) space is developed to make the robot aware of its changing environment.

View Article and Find Full Text PDF

Hyperspectral remote sensing is experiencing a dazzling proliferation of new sensors, platforms, systems, and applications with the introduction of novel, low-cost, low-weight sensors. Curiously, relatively little development is now occurring in the use of Fourier transform (FT) systems, which have the potential to operate at extremely high throughput without use of a slit or reductions in both spatial and spectral resolution that thin film based mosaic sensors introduce. This study introduces a new physics-based analytical framework called singular spectrum analysis (SSA) to process raw hyperspectral imagery collected with FT imagers that addresses some of the data processing issues associated with the use of the inverse FT.

View Article and Find Full Text PDF

Presented in a three-dimensional structure called a hypercube, hyperspectral imaging suffers from a large volume of data and high computational cost for data analysis. To overcome such drawbacks, principal component analysis (PCA) has been widely applied for feature extraction and dimensionality reduction. However, a severe bottleneck is how to compute the PCA covariance matrix efficiently and avoid computational difficulties, especially when the spatial dimension of the hypercube is large.

View Article and Find Full Text PDF