Tissue engineering leads to the development of biomaterial scaffolds where its biocompatibility and bioactivity are often improved after performing physical or chemical surface modification treatments. Micropatterning, soft lithography, and biofabrication are also approaches that provide a biomimetic microenvironment but have proven very costly and time consuming. In this concern, an appropriate substrate with suitable sites for cell attachment represents a major factor in cell behavior and biological functions.
View Article and Find Full Text PDFIn this work, we explore the use of electrochemical methods (i.e., impedance) along with the arsenic-specific aptamer (ArsSApt) to fabricate and study the interfacial properties of an arsenic (As(III)) sensor.
View Article and Find Full Text PDFInterfacial surface properties, both physical and chemical, are known to play a critical role in achieving long-term stability of cell-biomaterial interactions. Novel bone tissue engineering technologies, which provide a suitable interface between cells and biomaterials and mitigate aseptic osteolysis, are sought and can be developed via the incorporation of nanostructured materials. In this sense, engineered nanobased constructs provide an effective interface and suitable topography for direct interaction with cells, promoting faster osseointegration and anchoring.
View Article and Find Full Text PDF