Publications by authors named "Jaime Ramirez-Vick"

Background: Modulation of macrophage polarization is required for effective tissue repair and regenerative therapies. Therapeutic modulation of macrophages from an inflammatory M1 to a fibrotic M2 phenotype could help in diseases, such as chronic wounds, which are stalled in a prolonged and heightened inflammatory stage within the wound healing process.

Objective: This study evaluates the efficiency of a pullulan/gelatin nanofiber scaffold loaded with retinoic acid (RA) and adipose-derived mesenchymal stem cells (ASCs) to modulate M1 to M2 anti-inflammatory transition.

View Article and Find Full Text PDF

An important challenge in the fabrication of tissue engineered constructs for regenerative medical applications is the development of processes capable of delivering cells and biomaterials to specific locations in a consistent manner. Electrospraying live cells has been introduced in recent years as a cell seeding method, but its effect on phenotype nor genotype has not been explored. A promising candidate for the cellular component of these constructs are human adipose-derived stem cells (hASCs), which are multipotent stem cells that can be differentiated into fat, bone, and cartilage cells.

View Article and Find Full Text PDF

Background: The main objective of tissue engineering is to fabricate a tissue construct that mimics native tissue both biologically and mechanically. A recurring problem for tissue-engineered blood vessels (TEBV) is deficient elastogenesis from seeded smooth muscle cells. Elastin is an integral mechanical component in blood vessels, allowing elastic deformation and retraction in response to the shear and pulsatile forces of the cardiac system.

View Article and Find Full Text PDF

Much of the current understanding on molecular and cellular events of adipose developmental biology comes from monolayer cell culture models using preadipocyte cell lines, although in vivo adipose tissue consists of a much more complex three-dimensional microenvironment of diverse cell types, extracellular network, and tissue-specific morphological and functional features. Added to this fact, the preadipocytes, on which the adipogenesis mechanisms are mostly explored, possess some serious limitations (e.g.

View Article and Find Full Text PDF

Alternative bone regeneration strategies that do not rely on harvested tissue or exogenous growth factors are needed. One of the major challenges in tissue reconstruction is recreating the bone tissue microenvironment using the appropriate combination of cells, scaffold, and stimulation to direct differentiation. This study presents a bone regeneration formulation that involves the use of human adipose-derived mesenchymal stem cells (hASCs) and a three-dimensional (3D) hydrogel scaffold based on self-assembled RADA16 peptides containing superparamagnetic iron oxide nanoparticles (NPs).

View Article and Find Full Text PDF

Aim: Chloroquine (Chl) has shown its potential in cancer therapy and graphene oxide (GO) exhibited excellent tumor-targeting ability, biocompatibility and low toxicity. We have endeavored to conjugate Chl to GO sheets and investigated the nonproliferation action on A549 cell lines along with cell signaling pathways.

Materials & Methods: Cellular toxicity, autophagic flux modulation and cell death mechanism induced by GO-Chl have been investigated on A549 cell lines.

View Article and Find Full Text PDF

An efficient electrochemical transducer matrix for biosensing devices requires specific characteristics, such as fast electron transfer, stability, high surface area, biocompatibility, and presence of specific functional groups, to facilitate biomolecule attachment. We demonstrate the fabrication of an electrochemical immunosensor based on a highly stable gold nanoparticles-reduced graphene oxide (AuNPs-rGO) composite material as a transducer matrix for label-free and noninvasive detection of salivary oral cancer biomarker interleukin-8 (IL8). The synergy between rGO and AuNPs allowed the immunosensor to exhibit fast response and high sensitivity due to the improved electron transfer behavior of the composite.

View Article and Find Full Text PDF

Heart disease remains one of the leading causes of death in industrialized nations with myocardial infarction (MI) contributing to at least one fifth of the reported deaths. The hypoxic environment eventually leads to cellular death and scar tissue formation. The scar tissue that forms is not mechanically functional and often leads to myocardial remodeling and eventual heart failure.

View Article and Find Full Text PDF

Beta protein 1 (BP) is a homeobox protein expressed in 80% of breast cancer cells in either estrogen receptor (ER) positive or ER negative breast cancer. However, it is barely detectable in normal breast tissues. In this project we present an electrochemical DNA nanostructured gold biosensor for detection of BP.

View Article and Find Full Text PDF

The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection.

View Article and Find Full Text PDF

Four new molybdenocene complexes, Cp2Mo(l-ascorbato), Cp2Mo(6-O-palmitoyl-l-ascorbato), [Cp2Mo(ethyl maltolato)]Cl and Cp2Mo((2S)-2-amino-3-methyl-3-thiolato-butanoato), were synthesized and structurally characterized by standard analytical methods. The cytotoxicity of these complexes was assessed on colon HT-29 and breast MCF-7 cancer cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A higher cytotoxic activity was shown by all the new complexes on the MCF-7 cells over the Cp2MoCl2 complex.

View Article and Find Full Text PDF

Camptothecin (CPT) and its analogs exhibit remarkable anti-tumor activity, due to their ability to inhibit DNA topoisomerase I. However, its use is limited by the lack of solubility and stability of the active lactone form. An attractive alternative is the encapsulation of CPT within liposomes.

View Article and Find Full Text PDF

Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e.

View Article and Find Full Text PDF

We report a novel method for high-throughput investigations on cell-material interactions based on metal oxide nanoscaffolds. These scaffolds possess a continuous gradient of various titanium alloys allowing the compositional and morphological variation that could substantially improve the formation of an osseointegrative interface with bone. The model nanoscaffold has been fabricated on commercially pure titanium (cp-Ti) substrate with a compositional gradients of tin (Sn), chromium (Cr), and niobium (Nb) deposited using a combinatorial approach followed by annealing to create native oxide surface.

View Article and Find Full Text PDF

In the present study, 11-mercaptoundecanoic acid-modified gold nanoparticles (∼7 nm) were conjugated with chloroquine to explore their potential application in cancer therapeutics. The anticancer activity of chloroquine-gold nanoparticle conjugates (GNP-Chl) was demonstrated in MCF-7 breast cancer cells. The MCF-7 cells were treated with different concentrations of GNP-Chl conjugates, and the cell viability was assayed using trypan blue, resulting in an IC(50) value of 30 ± 5 μg/mL.

View Article and Find Full Text PDF

ZnO nanorods (ZnONR) grown onto indium-tin-oxide (ITO) coated glass surface using zinc nitrate hexahydrate/hexamethylenetetramine (HMT) in aqueous phase has been utilized for urea biosensor. Urease (Urs) was immobilized onto ZnONR/ITO at physiological pH via electrostatic interactions between Urs and ZnO to fabricate Urs/ZnONR/ITO bioelectrode. ZnONR/ITO electrode has been characterized using XRD, FE-SEM techniques and Urs/ZnONR/ITO bioelectrode using electrochemistry.

View Article and Find Full Text PDF