Publications by authors named "Jaime Ortega-Arroyo"

The translation of cell-derived extracellular vesicles (EVs) into biogenic gene delivery systems is limited by relatively inefficient loading strategies. In this work, the loading of various nucleic acids into small EVs via their spontaneous hybridization with preloaded non-lamellar liquid crystalline lipid nanoparticles (LCNPs), forming hybrid EVs (HEVs) is described. It is demonstrated that LCNPs undergo pH-dependent structural transitions from inverse hexagonal (H) phases at pH 5 to more disordered non-lamellar phases, possibly inverse micellar (L) or sponge (L) phases, at pH 7.

View Article and Find Full Text PDF

Label-free detection of multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies.

View Article and Find Full Text PDF

Label-free thermometry is a pivotal tool for many disciplines. However, most current approaches are only suitable for planar heat sources in steady state, thereby restricting the range of systems that can be reliably studied. Here, we introduce pump probe-based optical diffraction tomography (ODT) as a method to map temperature precisely and accurately in three dimensions (3D) at the single-particle level.

View Article and Find Full Text PDF

Label-free detecting multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies.

View Article and Find Full Text PDF

Label-free detecting multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies.

View Article and Find Full Text PDF

Rapid and reliable characterization of heterogeneous nanoparticle suspensions is a key technology across the nanosciences. Although approaches exist for homogeneous samples, they are often unsuitable for polydisperse suspensions, as particles of different sizes and compositions can lead to indistinguishable signals at the detector. Here, we introduce holographic nanoparticle tracking analysis, holoNTA, as a straightforward methodology that decouples size and material refractive index contributions.

View Article and Find Full Text PDF

Fluorescence microscopy is the method of choice in biology for its molecular specificity and super-resolution capabilities. However, it is limited to a narrow range around one observation plane. Here, we report an imaging approach that recovers the full electric field of fluorescent light with single-molecule sensitivity.

View Article and Find Full Text PDF

Enzyme-powered motors self-propel through the catalysis of bioavailable fuels, which makes them excellent candidates for biomedical applications. However, fundamental issues like their motion in biological fluids and the understanding of the propulsion mechanism are critical aspects to be tackled before a future application in biomedicine. Herein, we investigated the physicochemical effects of ionic species on the self-propulsion of urease-powered micromotors.

View Article and Find Full Text PDF

Autocatalytic chemical reactions are widely studied as models of biological processes and to better understand the origins of life on Earth. Minimal self-reproducing amphiphiles have been developed in this context and as an approach to de novo "bottom-up" synthetic protocells. How chemicals come together to produce living systems, however, remains poorly understood, despite much experimentation and speculation.

View Article and Find Full Text PDF

Interferometric scattering microscopy (iSCAT) is a light scattering-based imaging modality that offers a unique combination of imaging speed and precision for tracking nanoscopic labels and enables label-free optical sensing down to the single-molecule level. In contrast to fluorescence, iSCAT does not suffer from limitations associated with dye photochemistry and photophysics, or the requirement for fluorescent labeling. Here we present a protocol for constructing an iSCAT microscope from commercially available optical components and demonstrate its compatibility with simultaneously operating single-molecule, objective-type, total internal reflection fluorescence microscopy.

View Article and Find Full Text PDF

Current in vitro optical studies of microtubule dynamics tend to rely on fluorescent labeling of tubulin, with tracking accuracy thereby limited by the quantum yield of fluorophores and by photobleaching. Here, we demonstrate label-free tracking of microtubules with nanometer precision at kilohertz frame rates using interferometric scattering microscopy (iSCAT). With microtubules tethered to a glass substrate using low-density kinesin, we readily detect sequential 8 nm steps in the microtubule center of mass, characteristic of a single kinesin molecule moving a microtubule.

View Article and Find Full Text PDF

To dissect the kinetics of structural transitions underlying the stepping cycle of kinesin-1 at physiological ATP, we used interferometric scattering microscopy to track the position of gold nanoparticles attached to individual motor domains in processively stepping dimers. Labeled heads resided stably at positions 16.4 nm apart, corresponding to a microtubule-bound state, and at a previously unseen intermediate position, corresponding to a tethered state.

View Article and Find Full Text PDF

Myosin 5a is a dual-headed molecular motor that transports cargo along actin filaments. By following the motion of individual heads with interferometric scattering microscopy at nm spatial and ms temporal precision we found that the detached head occupies a loosely fixed position to one side of actin from which it rebinds in a controlled manner while executing a step. Improving the spatial precision to the sub-nm regime provided evidence for an ångstrom-level structural transition in the motor domain associated with the power stroke.

View Article and Find Full Text PDF

The biological functions of the cell membrane are influenced by the mobility of its constituents, which are thought to be strongly affected by nanoscale structure and organization. Interactions with the actin cytoskeleton have been proposed as a potential mechanism with the control of mobility imparted through transmembrane "pickets" or GPI-anchored lipid nanodomains. This hypothesis is based on observations of molecular mobility using various methods, although many of these lack the spatiotemporal resolution required to fully capture all the details of the interaction dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • Supported lipid bilayers (SLB) are important for studying lipid membrane processes, but the way they form is still debated due to difficulties in observing individual vesicle events.
  • Researchers used interferometric scattering microscopy (iSCAT) to visualize the real-time formation of SLBs from nanoscopic vesicles, capturing phenomena such as vesicle adsorption, rupture, and bilayer spreading.
  • Their findings indicate that SLB formation is influenced by the balance between bilayer edge tension and lipid-surface interaction, and iSCAT's capabilities allow for highly sensitive and accurate studies of nanoscale processes.
View Article and Find Full Text PDF

Optical microscopes have for centuries been our window to the microscopic world. The advent of single-molecule optics over the past few decades has ushered in a new era in optical imaging, partly because it has enabled the observation of motion and more recently structure on the nanoscopic scale through the development of super-resolution techniques. The large majority of these studies have relied on the efficient detection of fluorescence as the basis of single-molecule sensitivity.

View Article and Find Full Text PDF