Publications by authors named "Jaime Martinez-Garcia"

Extracellular vesicles (EVs) are increasingly recognized as crucial components influencing various pathophysiological processes, such as cellular homeostasis, cancer progression, and neurological disease. However, the lack of standardized methods for EV isolation and classification, coupled with ambiguity in biochemical markers associated with EV subtypes, remains a major challenge. This Trends article highlights the most common approaches for EV isolation and characterization, along with recent applications of elemental mass spectrometry (MS) to analyse metals and biomolecules in EVs obtained from biofluids or in vitro cellular models.

View Article and Find Full Text PDF

Shade tolerance is an ecological concept used in a wide range of disciplines, from plant physiology to landscaping or gardening. It refers to the strategy of some plants to persist and even thrive in environments with low light levels because of the shade produced by the vegetation proximity (e.g.

View Article and Find Full Text PDF

The determination of endogenous Fe, Cu and Zn in exosomes (<200 nm extracellular vesicles) secreted by an in vitro model of the human retinal pigment epithelium (HRPEsv cell line) was carried out by inductively coupled plasma - mass spectrometry (ICP-MS). Results for cells treated with 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH) inducing oxidative stress (OS) conditions were compared with non-treated (control) cells in order to evaluate possible differences in the metal composition between both groups. Three sample introduction systems were tested for ICP-MS analysis: a micronebulizer and two single cell nebulization systems (as total consumption set-ups), being found one of the single cell systems (operating in bulk mode) as the most suitable.

View Article and Find Full Text PDF

Light stimulates carotenoid synthesis in plants during photomorphogenesis through the expression of PHYTOENE SYNTHASE (PSY), a key gene in carotenoid biosynthesis. The orange carrot (Daucus carota) synthesizes and accumulates high amounts of carotenoids in the taproot that grows underground. Contrary to other organs, light impairs carrot taproot development and represses the expression of carotenogenic genes, such as DcPSY1 and DcPSY2, reducing carotenoid accumulation.

View Article and Find Full Text PDF

Stevia rebaudiana leaf extracts contain stevioside and rebaudioside A, two steviol glycosides (SGs) used as natural sweeteners because of their non-toxic, thermally stable and non-caloric properties. Indeed, leaf extracts can be up to 300 times sweeter than sucrose. Stevioside and rebaudioside A have organoleptic differences, the first one having an undesirable bitterness and the second one a higher sweetener capacity.

View Article and Find Full Text PDF

When growing in search for light, plants can experience continuous or occasional shading by other plants. Plant proximity causes a decrease in the ratio of R to far-red light (low R:FR) due to the preferential absorbance of R light and reflection of FR light by photosynthetic tissues of neighboring plants. This signal is often perceived before actual shading causes a reduction in photosynthetically active radiation (low PAR).

View Article and Find Full Text PDF

Shade caused by the proximity of neighboring vegetation triggers a set of acclimation responses to either avoid or tolerate shade. Comparative analyses between the shade-avoider Arabidopsis thaliana and the shade-tolerant Cardamine hirsuta revealed a role for the atypical basic-helix-loop-helix LONG HYPOCOTYL IN FR 1 (HFR1) in maintaining the shade tolerance in C. hirsuta, inhibiting hypocotyl elongation in shade and constraining expression profile of shade-induced genes.

View Article and Find Full Text PDF

Light is a key resource for plants as it fuels photosynthesis. It also provides essential information about their habitat. Thus, light tracking is of great importance to plants throughout their life cycle.

View Article and Find Full Text PDF

Perception of vegetation proximity or plant shade informs of potential competition for resources by the neighboring vegetation. As vegetation proximity impacts on both light quantity and quality, perception of this cue by plant photoreceptors reprograms development to result in responses that allow plants to compete with the neighboring vegetation. Developmental reprogramming involves massive and rapid changes in gene expression, with the concerted action of photoreceptors and downstream transcription factors.

View Article and Find Full Text PDF

Plants have evolved two major ways to deal with nearby vegetation or shade: avoidance and tolerance. Moreover, some plants respond to shade in different ways; for example, Arabidopsis () undergoes an avoidance response to shade produced by vegetation, but its close relative tolerates shade. How plants adopt opposite strategies to respond to the same environmental challenge is unknown.

View Article and Find Full Text PDF

Plants detect neighboring vegetation as potential competitors for resources. Vegetation proximity is perceived by changes in the red (R) to far-red (FR) ratio (R:FR) through the phytochrome photoreceptors. To face this challenge, many plants have evolved the strategy to avoid shade, displaying a series of responses known as the shade avoidance syndrome (SAS).

View Article and Find Full Text PDF

Plants use light as energy for photosynthesis but also as a signal of competing vegetation. Using different concentrations of norflurazon and lincomycin, we found that the response to canopy shade in Arabidopsis () was repressed even when inhibitors only caused a modest reduction in the level of photosynthetic pigments. High inhibitor concentrations resulted in albino seedlings that were unable to elongate when exposed to shade, in part due to attenuated light perception and signaling via phytochrome B and phytochrome-interacting factors.

View Article and Find Full Text PDF

In plants, perception of vegetation proximity by phytochrome photoreceptors activates a transcriptional network that implements a set of responses to adapt to plant competition, including elongation of stems or hypocotyls. In Arabidopsis thaliana, the homeodomain-leucine zipper (HD-Zip) transcription factor ARABIDOPSIS THALIANA HOMEOBOX 4 (ATHB4) regulates this and other responses, such as leaf polarity. To better understand the shade regulatory transcriptional network, we have carried out structure-function analyses of ATHB4 by overexpressing a series of truncated and mutated forms and analyzing three different responses: hypocotyl response to shade, transcriptional activity and leaf polarity.

View Article and Find Full Text PDF

Light stimulates the biosynthesis of carotenoids and regulates the development of plastid structures to accommodate these photoprotective pigments. Work with Arabidopsis revealed molecular factors coordinating carotenoid biosynthesis and storage with photosynthetic development during deetiolation, when underground seedlings emerge to the light. Some of these factors also adjust carotenoid biosynthesis in response to plant proximity (i.

View Article and Find Full Text PDF

Light perception and hormone signaling in plants are likely connected at multiple points. Light conditions, perceived by photoreceptors, control plant responses by altering hormone concentration, tissue sensitivity, or a combination of both. Whereas it is relatively straightforward to assess the light effects on hormone levels, hormone sensitivity is subjected to interpretation.

View Article and Find Full Text PDF

When plants grow in close proximity basic resources such as light can become limiting. Under such conditions plants respond to anticipate and/or adapt to the light shortage, a process known as the shade avoidance syndrome (SAS). Following genetic screening using a shade-responsive luciferase reporter line (PHYB:LUC), we identified DRACULA2 (DRA2), which encodes an Arabidopsis homolog of mammalian nucleoporin 98, a component of the nuclear pore complex (NPC).

View Article and Find Full Text PDF

In high density of vegetation, plants detect neighbors by perceiving changes in light quality through phytochrome photoreceptors. Close vegetation proximity might result in competition for resources, such as light. To face this challenge, plants have evolved two alternative strategies: to either tolerate or avoid shade.

View Article and Find Full Text PDF

An intricate network of antagonistically acting transcription factors mediates the formation of a flat leaf lamina of Arabidopsis (Arabidopsis thaliana) plants. In this context, members of the class III homeodomain leucine zipper (HD-ZIPIII) transcription factor family specify the adaxial domain (future upper side) of the leaf, while antagonistically acting KANADI transcription factors determine the abaxial domain (future lower side). Here, we used a messenger RNA sequencing approach to identify genes regulated by KANADI1 (KAN1) and subsequently performed a meta-analysis combining our data sets with published genome-wide data sets.

View Article and Find Full Text PDF
Article Synopsis
  • Carotenoids are important pigments in plants that help protect against too much light, and their production is controlled by two key proteins, PIF1 and HY5, which work in opposition to regulate a gene called PHYTOENE SYNTHASE (PSY).
  • PIF1 and similar proteins decrease carotenoid production when plants sense shade or nearby vegetation, while HY5 isn't necessary for this specific shade response, although other PIF antagonists influence PSY gene expression.
  • The study highlights that the regulation of carotenoid biosynthesis in shaded conditions involves complex interactions between various transcription factors and cofactors, indicating a sophisticated response mechanism in plants.
View Article and Find Full Text PDF

Light limitation caused by dense vegetation is one of the greatest threats to plant survival in natural environments. Plants detect such neighboring vegetation as a reduction in the red to far-red ratio (R:FR) of the incoming light. The low R:FR signal, perceived by phytochromes, initiates a set of responses collectively known as the shade avoidance syndrome, intended to reduce the degree of current or future shade from neighbors by overtopping such competitors or inducing flowering to ensure seed production.

View Article and Find Full Text PDF

The shade avoidance syndrome (SAS) refers to a set of plant responses initiated after perception by the phytochromes of light enriched in far-red colour reflected from or filtered by neighbouring plants. These varied responses are aimed at anticipating eventual shading from potential competitor vegetation. In Arabidopsis thaliana, the most obvious SAS response at the seedling stage is the increase in hypocotyl elongation.

View Article and Find Full Text PDF

A major goal in biology is to identify the genetic basis for phenotypic diversity. This goal underpins research in areas as diverse as evolutionary biology, plant breeding and human genetics. A limitation for this research is no longer the availability of sequence information but the development of functional genetic tools to understand the link between changes in sequence and phenotype.

View Article and Find Full Text PDF

The shade avoidance syndrome (SAS) refers to a set of plant responses initiated after perception by the phytochromes of light with a reduced red to far-red ratio, indicative of vegetation proximity or shade. These responses, including elongation growth, anticipate eventual shading from potential competitor vegetation by overgrowing neighboring plants or flowering to ensure production of viable seeds for the next generation. In Arabidopsis thaliana seedlings, the SAS includes dramatic changes in gene expression, such as induction of PHYTOCHROME RAPIDLY REGULATED 1 (PAR1), encoding an atypical basic helix-loop-helix (bHLH) protein that acts as a transcriptional co-factor to repress hypocotyl elongation.

View Article and Find Full Text PDF