Publications by authors named "Jaime M Moya"

With the recent strive to develop novel quantum materials, including two-dimensional nanosheets, alkali-layered intercalated materials have found a new purpose as starting materials for such compounds. Enriching the library of alkali materials, we present a solid-state synthesis for preparing NaWS (1̅, No. 2) and RbWS (2/, No.

View Article and Find Full Text PDF
Article Synopsis
  • Flat bands can lead to unique physical properties like superconductivity and many-body effects, and their behavior depends on the quantum metric, which helps distinguish between interesting correlated physics and less significant dangling bonds.
  • Geometric structures, such as the kagome lattice, show promise for creating correlated flat bands, though real materials often add complexity, making quantum geometry crucial for understanding band properties.
  • Researchers used a soft-chemical process to oxidize Ni-kagome material CsNiS, significantly reducing its resistance, yet it remained insulating without any phase transition, hinting at a mysterious correlated insulating state.
View Article and Find Full Text PDF

Magnetic topological semimetals allow for an effective control of the topological electronic states by tuning the spin configuration. Among them, Weyl nodal line semimetals are thought to have the greatest tunability, yet they are the least studied experimentally due to the scarcity of material candidates. Here, using a combination of angle-resolved photoemission spectroscopy and quantum oscillation measurements, together with density functional theory calculations, we identify the square-net compound EuGa as a magnetic Weyl nodal ring semimetal, in which the line nodes form closed rings near the Fermi level.

View Article and Find Full Text PDF

The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc995j9um8atvc3652blss5dntjvlk09j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once